Aircraft Performance And Design Second Edition
Download Aircraft Performance And Design Second Edition full books in PDF, epub, and Kindle. Read online free Aircraft Performance And Design Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : John David Anderson |
Publisher | : McGraw-Hill Science, Engineering & Mathematics |
Total Pages | : 602 |
Release | : 1999 |
Genre | : Technology & Engineering |
ISBN | : |
Balancing technical material with important historical aspects of the invention and design of aeroplanes, this book develops aircraft performance techniques from first principles and applies them to real aeroplanes.
Author | : Jack D. Mattingly |
Publisher | : AIAA |
Total Pages | : 732 |
Release | : 2002 |
Genre | : Aircraft gas-turbines |
ISBN | : 9781600860164 |
Annotation A design textbook attempting to bridge the gap between traditional academic textbooks, which emphasize individual concepts and principles; and design handbooks, which provide collections of known solutions. The airbreathing gas turbine engine is the example used to teach principles and methods. The first edition appeared in 1987. The disk contains supplemental material. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Author | : Peter J. Swatton |
Publisher | : John Wiley & Sons |
Total Pages | : 384 |
Release | : 2008-04-30 |
Genre | : Technology & Engineering |
ISBN | : 0470693053 |
The new European Joint Aviation Requirements (JARs) lay down rules governing the minimum levels of performance which must be attained by every type of public transport aeroplane. These rules cover matters such as weight, altitude and temperature, take-off and landing distance, cruise flight level and speed, and descent angle and rate. The subject of aircraft performance forms an important part of all JAR Flight Crew Licensing examinations for commercial and airline transport pilot licences, and this book provides a clear but authoritative text on a difficult topic. It will also be of interest to commercial pilots needing to upgrade their annual ground test to JAR standards, and to flight planners, operations controllers and airport operators.
Author | : Mohammad H. Sadraey |
Publisher | : CRC Press |
Total Pages | : 572 |
Release | : 2017-01-27 |
Genre | : Science |
ISBN | : 1498776566 |
Aircraft Performance: An Engineering Approach introduces flight performance analysis techniques that enable readers to determine performance and flight capabilities of aircraft. Flight performance analysis for prop-driven and jet aircraft is explored, supported by examples and illustrations, many in full color. MATLAB programming for performance analysis is included, and coverage of modern aircraft types is emphasized. The text builds a strong foundation for advanced coursework in aircraft design and performance analysis.
Author | : Bandu N. Pamadi |
Publisher | : AIAA |
Total Pages | : 810 |
Release | : 2004 |
Genre | : Aerodynamics |
ISBN | : 9781600860997 |
Author | : Snorri Gudmundsson |
Publisher | : Butterworth-Heinemann |
Total Pages | : 1058 |
Release | : 2013-09-03 |
Genre | : Technology & Engineering |
ISBN | : 0123973295 |
Find the right answer the first time with this useful handbook of preliminary aircraft design. Written by an engineer with close to 20 years of design experience, General Aviation Aircraft Design: Applied Methods and Procedures provides the practicing engineer with a versatile handbook that serves as the first source for finding answers to realistic aircraft design questions. The book is structured in an "equation/derivation/solved example" format for easy access to content. Readers will find it a valuable guide to topics such as sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design. In most cases, numerical examples involve actual aircraft specs. Concepts are visually depicted by a number of useful black-and-white figures, photos, and graphs (with full-color images included in the eBook only). Broad and deep in coverage, it is intended for practicing engineers, aerospace engineering students, mathematically astute amateur aircraft designers, and anyone interested in aircraft design. - Organized by articles and structured in an "equation/derivation/solved example" format for easy access to the content you need - Numerical examples involve actual aircraft specs - Contains high-interest topics not found in other texts, including sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design - Provides a unique safety-oriented design checklist based on industry experience - Discusses advantages and disadvantages of using computational tools during the design process - Features detailed summaries of design options detailing the pros and cons of each aerodynamic solution - Includes three case studies showing applications to business jets, general aviation aircraft, and UAVs - Numerous high-quality graphics clearly illustrate the book's concepts (note: images are full-color in eBook only)
Author | : Maido Saarlas |
Publisher | : John Wiley & Sons |
Total Pages | : 298 |
Release | : 2006-12-05 |
Genre | : Technology & Engineering |
ISBN | : 0470044160 |
Aircraft PERFORMANCE STRAIGHTFORWARD METHODS TO DESIGN AND OPERATE AIRCRAFT TO MEET PERFORMANCE SPECIFICATIONS Aircraft Performance sets forth a group of tested and proven methods needed to determine the performance of an aircraft. The central theme of this book is the energy method, which enhances understanding of the standard methods and provides accessibility to advanced topics. As a result, readers gain a thorough understanding of the performance issues involved in operating an aircraft in an efficient and economic manner. While covering all the standard topics—level and climbing flight, range and endurance, take-off and landing, and maneuvering flight—the book focuses on the energy methods applied to path performance analysis. Throughout the text, numerous examples from both the commercial and military sectors show readers how the concepts and calculations are applied to real-life situations. Problems, ranging from basic to complex, test the readers’ understanding and provide an opportunity for essential practice. To help focus the readers’ attention on core issues, this text assumes that aerodynamics and propulsion are known inputs. Special appendices are provided to present some aerodynamic and propulsive equations and data. In general, topics are separated into horizontal and vertical plane approaches. Following an introduction and overview, basic energy concepts are employed to obtain a fundamental performance equation. This text, with its extensive use of examples and problem sets, is ideal for upper- level undergraduate and graduate students in engineering. It also serves as a reference for design engineers in both military and industrial sectors who want a set of clear and reliable methods to calculate aircraft performance.
Author | : Jan Roskam |
Publisher | : DARcorporation |
Total Pages | : 748 |
Release | : 1997 |
Genre | : Science |
ISBN | : 9781884885440 |
Author | : Thomas R. Yechout |
Publisher | : AIAA |
Total Pages | : 666 |
Release | : 2003 |
Genre | : Aerodynamics |
ISBN | : 9781600860782 |
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Author | : Mohammad H. Sadraey |
Publisher | : John Wiley & Sons |
Total Pages | : 811 |
Release | : 2012-11-20 |
Genre | : Technology & Engineering |
ISBN | : 1118352807 |
A comprehensive approach to the air vehicle design process using the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required. Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout the book the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall. Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aero-structure, and flight dynamics will find this book ideal to progress towards the next stage in their understanding of the topic. Furthermore, the broad variety of design techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approaching real-world projects. Key features: • Provides full coverage of the design aspects of an air vehicle including: aeronautical concepts, design techniques and design flowcharts • Features end of chapter problems to reinforce the learning process as well as fully solved design examples at component level • Includes fundamental explanations for aeronautical engineering students and practicing engineers • Features a solutions manual to sample questions on the book’s companion website Companion website - www.wiley.com/go/sadraey