Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Author:
Publisher:
Total Pages: 1026
Release:
Genre: Aeronautics
ISBN:

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Bringing the Future Within Reach

Bringing the Future Within Reach
Author: Robert S. Arrighi
Publisher: Government Printing Office
Total Pages: 428
Release: 2016
Genre: Technology & Engineering
ISBN: 9780160932106

The book documents Glenn's many research specialties over those 75 years. Among them are early jet engines and rockets; flight safety and fuel efficiency tested in premier icing and wind tunnels; liquid hydrogen fuel which, despite skeptics like aerospace engineer Wernher von Braun, helped the U.S. win the race to the moon; and electric propulsion, considered key to future space flight. Space enthusiasts, aviation personnel, aerospace engineers, and inventors may be interested in this comprehensive and milestone volume. Other related products: NASA at 50: Interviews With NASA\'s Senior Leadership can be found here: https: //bookstore.gpo.gov/products/sku/033-000-01360-4 Other products published by National Aeronautical and Space Administration (NASA) can be found here: https: //bookstore.gpo.gov/agency/550

Animal Locomotion

Animal Locomotion
Author: Graham Taylor
Publisher: Springer Science & Business Media
Total Pages: 433
Release: 2010-03-20
Genre: Science
ISBN: 3642116337

The physical principles of swimming and flying in animals are intriguingly different from those of ships and airplanes. The study of animal locomotion therefore holds a special place not only at the frontiers of pure fluid dynamics research, but also in the applied field of biomimetics, which aims to emulate salient aspects of the performance and function of living organisms. For example, fluid dynamic loads are so significant for swimming fish that they are expected to have developed efficient flow control procedures through the evolutionary process of adaptation by natural selection, which might in turn be applied to the design of robotic swimmers. And yet, sharply contrasting views as to the energetic efficiency of oscillatory propulsion – especially for marine animals – demand a careful assessment of the forces and energy expended at realistic Reynolds numbers. For this and many other research questions, an experimental approach is often the most appropriate methodology. This holds as much for flying animals as it does for swimming ones, and similar experimental challenges apply – studying tethered as opposed to free locomotion, or studying the flow around robotic models as opposed to real animals. This book provides a wide-ranging snapshot of the state-of-the-art in experimental research on the physics of swimming and flying animals. The resulting picture reflects not only upon the questions that are of interest in current pure and applied research, but also upon the experimental techniques that are available to answer them.