Human + Machine

Human + Machine
Author: Paul R. Daugherty
Publisher: Harvard Business Press
Total Pages: 268
Release: 2018-03-20
Genre: Computers
ISBN: 1633693872

AI is radically transforming business. Are you ready? Look around you. Artificial intelligence is no longer just a futuristic notion. It's here right now--in software that senses what we need, supply chains that "think" in real time, and robots that respond to changes in their environment. Twenty-first-century pioneer companies are already using AI to innovate and grow fast. The bottom line is this: Businesses that understand how to harness AI can surge ahead. Those that neglect it will fall behind. Which side are you on? In Human + Machine, Accenture leaders Paul R. Daugherty and H. James (Jim) Wilson show that the essence of the AI paradigm shift is the transformation of all business processes within an organization--whether related to breakthrough innovation, everyday customer service, or personal productivity habits. As humans and smart machines collaborate ever more closely, work processes become more fluid and adaptive, enabling companies to change them on the fly--or to completely reimagine them. AI is changing all the rules of how companies operate. Based on the authors' experience and research with 1,500 organizations, the book reveals how companies are using the new rules of AI to leap ahead on innovation and profitability, as well as what you can do to achieve similar results. It describes six entirely new types of hybrid human + machine roles that every company must develop, and it includes a "leader’s guide" with the five crucial principles required to become an AI-fueled business. Human + Machine provides the missing and much-needed management playbook for success in our new age of AI. BOOK PROCEEDS FOR THE AI GENERATION The authors' goal in publishing Human + Machine is to help executives, workers, students and others navigate the changes that AI is making to business and the economy. They believe AI will bring innovations that truly improve the way the world works and lives. However, AI will cause disruption, and many people will need education, training and support to prepare for the newly created jobs. To support this need, the authors are donating the royalties received from the sale of this book to fund education and retraining programs focused on developing fusion skills for the age of artificial intelligence.

Machine Learning

Machine Learning
Author: Ethem Alpaydin
Publisher: MIT Press
Total Pages: 225
Release: 2016-10-07
Genre: Computers
ISBN: 0262529513

A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition—as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as “Big Data” has gotten bigger, the theory of machine learning—the foundation of efforts to process that data into knowledge—has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications. Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of “data science,” and discusses the ethical and legal implications for data privacy and security.

The Artist in the Machine

The Artist in the Machine
Author: Arthur I. Miller
Publisher: MIT Press
Total Pages: 429
Release: 2019-10-01
Genre: Computers
ISBN: 0262042851

An authority on creativity introduces us to AI-powered computers that are creating art, literature, and music that may well surpass the creations of humans. Today's computers are composing music that sounds “more Bach than Bach,” turning photographs into paintings in the style of Van Gogh's Starry Night, and even writing screenplays. But are computers truly creative—or are they merely tools to be used by musicians, artists, and writers? In this book, Arthur I. Miller takes us on a tour of creativity in the age of machines. Miller, an authority on creativity, identifies the key factors essential to the creative process, from “the need for introspection” to “the ability to discover the key problem.” He talks to people on the cutting edge of artificial intelligence, encountering computers that mimic the brain and machines that have defeated champions in chess, Jeopardy!, and Go. In the central part of the book, Miller explores the riches of computer-created art, introducing us to artists and computer scientists who have, among much else, unleashed an artificial neural network to create a nightmarish, multi-eyed dog-cat; taught AI to imagine; developed a robot that paints; created algorithms for poetry; and produced the world's first computer-composed musical, Beyond the Fence, staged by Android Lloyd Webber and friends. But, Miller writes, in order to be truly creative, machines will need to step into the world. He probes the nature of consciousness and speaks to researchers trying to develop emotions and consciousness in computers. Miller argues that computers can already be as creative as humans—and someday will surpass us. But this is not a dystopian account; Miller celebrates the creative possibilities of artificial intelligence in art, music, and literature.

Working with AI

Working with AI
Author: Thomas H. Davenport
Publisher: MIT Press
Total Pages: 312
Release: 2022-09-27
Genre: Business & Economics
ISBN: 0262371197

Two management and technology experts show that AI is not a job destroyer, exploring worker-AI collaboration in real-world work settings. This book breaks through both the hype and the doom-and-gloom surrounding automation and the deployment of artificial intelligence-enabled—“smart”—systems at work. Management and technology experts Thomas Davenport and Steven Miller show that, contrary to widespread predictions, prescriptions, and denunciations, AI is not primarily a job destroyer. Rather, AI changes the way we work—by taking over some tasks but not entire jobs, freeing people to do other, more important and more challenging work. By offering detailed, real-world case studies of AI-augmented jobs in settings that range from finance to the factory floor, Davenport and Miller also show that AI in the workplace is not the stuff of futuristic speculation. It is happening now to many companies and workers. These cases include a digital system for life insurance underwriting that analyzes applications and third-party data in real time, allowing human underwriters to focus on more complex cases; an intelligent telemedicine platform with a chat-based interface; a machine learning-system that identifies impending train maintenance issues by analyzing diesel fuel samples; and Flippy, a robotic assistant for fast food preparation. For each one, Davenport and Miller describe in detail the work context for the system, interviewing job incumbents, managers, and technology vendors. Short “insight” chapters draw out common themes and consider the implications of human collaboration with smart systems.

AI and Machine Learning for Coders

AI and Machine Learning for Coders
Author: Laurence Moroney
Publisher: O'Reilly Media
Total Pages: 393
Release: 2020-10-01
Genre: Computers
ISBN: 1492078166

If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving

Designing Autonomous AI

Designing Autonomous AI
Author: Kence Anderson
Publisher: "O'Reilly Media, Inc."
Total Pages: 253
Release: 2022-06-14
Genre: Computers
ISBN: 1098110706

Early rules-based artificial intelligence demonstrated intriguing decision-making capabilities but lacked perception and didn't learn. AI today, primed with machine learning perception and deep reinforcement learning capabilities, can perform superhuman decision-making for specific tasks. This book shows you how to combine the practicality of early AI with deep learning capabilities and industrial control technologies to make robust decisions in the real world. Using concrete examples, minimal theory, and a proven architectural framework, author Kence Anderson demonstrates how to teach autonomous AI explicit skills and strategies. You'll learn when and how to use and combine various AI architecture design patterns, as well as how to design advanced AI without needing to manipulate neural networks or machine learning algorithms. Students, process operators, data scientists, machine learning algorithm experts, and engineers who own and manage industrial processes can use the methodology in this book to design autonomous AI. This book examines: Differences between and limitations of automated, autonomous, and human decision-making Unique advantages of autonomous AI for real-time decision-making, with use cases How to design an autonomous AI from modular components and document your designs

AI and Machine Learning for On-Device Development

AI and Machine Learning for On-Device Development
Author: Laurence Moroney
Publisher: "O'Reilly Media, Inc."
Total Pages: 329
Release: 2021-08-12
Genre: Computers
ISBN: 1098101715

Chapter 2. Introduction to Computer Vision -- Using Neurons for Vision -- Your First Classifier: Recognizing Clothing Items -- The Data: Fashion MNIST -- A Model Architecture to Parse Fashion MNIST -- Coding the Fashion MNIST Model -- Transfer Learning for Computer Vision -- Summary -- Chapter 3. Introduction to ML Kit -- Building a Face Detection App on Android -- Step 1: Create the App with Android Studio -- Step 2: Add and Configure ML Kit -- Step 3: Define the User Interface -- Step 4: Add the Images as Assets -- Step 5: Load the UI with a Default Picture.

AI at War

AI at War
Author: Sam J Tangredi
Publisher: Naval Institute Press
Total Pages: 343
Release: 2021-03-15
Genre: Political Science
ISBN: 1682476340

Artificial intelligence (AI) may be the most beneficial technological development of the twenty-first century.Media hype and raised expectations for results, however, have clouded understanding of the true nature of AI—including its limitations and potential. AI at War provides a balanced and practical understanding of applying AI to national security and warfighting professionals as well as a wide array of other readers. Although the themes and findings of the chapters are relevant across the U.S. Department of Defense, to include all Services, the Joint Staff and defense agencies as well as allied and partner ministries of defense, this book is a case study of warfighting functions in the Naval Services—the U.S. Navy and U.S. Marine Corps. Sam J. Tangredi and George Galdorisi bring together over thirty experts, ranging from former DOD officials and retired flag officers to scientists and active duty junior officers. These contributors present views on a vast spectrum of subjects pertaining to the implementation of AI in modern warfare, including strategy, policy, doctrine, weapons, and ethical concerns.

The Sentient Machine

The Sentient Machine
Author: Amir Husain
Publisher: Simon and Schuster
Total Pages: 224
Release: 2017-11-21
Genre: Computers
ISBN: 1501144677

Explores universal questions about humanity's capacity for living and thriving in the coming age of sentient machines and AI, examining debates from opposing perspectives while discussing emerging intellectual diversity and its potential role in enabling a positive life.

Machines Behaving Badly

Machines Behaving Badly
Author: Toby Walsh
Publisher: La Trobe University Press
Total Pages: 244
Release: 2022-05-03
Genre: Technology & Engineering
ISBN: 1743822332

Artificial intelligence is an essential part of our lives – for better or worse. It can be used to influence what we buy, who gets shortlisted for a job and even how we vote. Without AI, medical technology wouldn’t have come so far, we’d still be getting lost on backroads in our GPS-free cars, and smartphones wouldn’t be so, well, smart. But as we continue to build more intelligent and autonomous machines, what impact will this have on humanity and the planet? Professor Toby Walsh, a world-leading researcher in the field of artificial intelligence, explores the ethical considerations and unexpected consequences AI poses – Is Alexa racist? Can robots have rights? What happens if a self-driving car kills someone? What limitations should we put on the use of facial recognition? Machines Behaving Badly is a thought-provoking look at the increasing human reliance on robotics and the decisions that need to be made now to ensure the future of AI is as a force for good, not evil.