Ai Centric Modeling And Analytics
Download Ai Centric Modeling And Analytics full books in PDF, epub, and Kindle. Read online free Ai Centric Modeling And Analytics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Alex Khang |
Publisher | : CRC Press |
Total Pages | : 396 |
Release | : 2023-12-06 |
Genre | : Computers |
ISBN | : 1003815308 |
This book shares new methodologies, technologies, and practices for resolving issues associated with leveraging AI-centric modeling, data analytics, machine learning-aided models, Internet of Things-driven applications, and cybersecurity techniques in the era of Industrial Revolution 4.0. AI-Centric Modeling and Analytics: Concepts, Technologies, and Applications focuses on how to implement solutions using models and techniques to gain insights, predict outcomes, and make informed decisions. This book presents advanced AI-centric modeling and analysis techniques that facilitate data analytics and learning in various applications. It offers fundamental concepts of advanced techniques, technologies, and tools along with the concept of real-time analysis systems. It also includes AI-centric approaches for the overall innovation, development, and implementation of business development and management systems along with a discussion of AI-centric robotic process automation systems that are useful in many government and private industries. This reference book targets a mixed audience of engineers and business analysts, researchers, professionals, and students from various fields.
Author | : Alex Khang |
Publisher | : |
Total Pages | : 0 |
Release | : 2023-12 |
Genre | : Artificial intelligence |
ISBN | : 9781032508795 |
"This reference book shares new methodologies, technologies, and practices for resolving issues associated with leveraging AI-centric modeling, data analytics, ML-aided models, IoT-driven applications, and cybersecurity techniques in the era of the Industrial Revolution 4.0. It targets a mixed audience of engineers and business analysts, researchers, professionals, and students across various fields"--
Author | : Mehta, Shilpa |
Publisher | : IGI Global |
Total Pages | : 434 |
Release | : 2024-08-09 |
Genre | : Computers |
ISBN | : |
In the digital landscape, the Metaverse emerges as a frontier of boundless possibilities. Yet, its potential remains largely untapped. The pressing challenge lies in harnessing the power of machine learning to navigate this uncharted territory, where virtual reality, augmented reality, and immersive technologies converge to redefine human interaction and experience. Impact and Potential of Machine Learning in the Metaverse offers a comprehensive examination of how machine learning techniques can shape the future of the Metaverse. This advanced work addresses key domains such as healthcare, education, gaming, and beyond. By delving into topics like digital twins in healthcare and blockchain-enabled security, the book not only sheds light on advancements but also confronts challenges head-on, inspiring scholars to explore new research directions and interdisciplinary collaborations. Through real-world case studies and practical applications, readers gain actionable insights into leveraging machine learning for transformative impact in the Metaverse.
Author | : James Taylor |
Publisher | : Pearson Education |
Total Pages | : 387 |
Release | : 2011-10-13 |
Genre | : Business & Economics |
ISBN | : 0132884445 |
"A very rich book sprinkled with real-life examples as well as battle-tested advice.” —Pierre Haren, VP ILOG, IBM "James does a thorough job of explaining Decision Management Systems as enablers of a formidable business transformation.” —Deepak Advani, Vice President, Business Analytics Products and SPSS, IBM Build Systems That Work Actively to Help You Maximize Growth and Profits Most companies rely on operational systems that are largely passive. But what if you could make your systems active participants in optimizing your business? What if your systems could act intelligently on their own? Learn, not just report? Empower users to take action instead of simply escalating their problems? Evolve without massive IT investments? Decision Management Systems can do all that and more. In this book, the field’s leading expert demonstrates how to use them to drive unprecedented levels of business value. James Taylor shows how to integrate operational and analytic technologies to create systems that are more agile, more analytic, and more adaptive. Through actual case studies, you’ll learn how to combine technologies such as predictive analytics, optimization, and business rules—improving customer service, reducing fraud, managing risk, increasing agility, and driving growth. Both a practical how-to guide and a framework for planning, Decision Management Systems focuses on mainstream business challenges. Coverage includes Understanding how Decision Management Systems can transform your business Planning your systems “with the decision in mind” Identifying, modeling, and prioritizing the decisions you need to optimize Designing and implementing robust decision services Monitoring your ongoing decision-making and learning how to improve it Proven enablers of effective Decision Management Systems: people, process, and technology Identifying and overcoming obstacles that can derail your Decision Management Systems initiative
Author | : Tony UcedaVelez |
Publisher | : John Wiley & Sons |
Total Pages | : 692 |
Release | : 2015-05-26 |
Genre | : Political Science |
ISBN | : 0470500964 |
This book introduces the Process for Attack Simulation & Threat Analysis (PASTA) threat modeling methodology. It provides an introduction to various types of application threat modeling and introduces a risk-centric methodology aimed at applying security countermeasures that are commensurate to the possible impact that could be sustained from defined threat models, vulnerabilities, weaknesses, and attack patterns. This book describes how to apply application threat modeling as an advanced preventive form of security. The authors discuss the methodologies, tools, and case studies of successful application threat modeling techniques. Chapter 1 provides an overview of threat modeling, while Chapter 2 describes the objectives and benefits of threat modeling. Chapter 3 focuses on existing threat modeling approaches, and Chapter 4 discusses integrating threat modeling within the different types of Software Development Lifecycles (SDLCs). Threat modeling and risk management is the focus of Chapter 5. Chapter 6 and Chapter 7 examine Process for Attack Simulation and Threat Analysis (PASTA). Finally, Chapter 8 shows how to use the PASTA risk-centric threat modeling process to analyze the risks of specific threat agents targeting web applications. This chapter focuses specifically on the web application assets that include customer’s confidential data and business critical functionality that the web application provides. • Provides a detailed walkthrough of the PASTA methodology alongside software development activities, normally conducted via a standard SDLC process • Offers precise steps to take when combating threats to businesses • Examines real-life data breach incidents and lessons for risk management Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis is a resource for software developers, architects, technical risk managers, and seasoned security professionals.
Author | : Thomas H. Davenport |
Publisher | : Harvard Business Press |
Total Pages | : 243 |
Release | : 2007-03-06 |
Genre | : Business & Economics |
ISBN | : 1422156303 |
You have more information at hand about your business environment than ever before. But are you using it to “out-think” your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new tools to identify their most profitable customers and offer them the right price, to accelerate product innovation, to optimize supply chains, and to identify the true drivers of financial performance. A wealth of examples—from organizations as diverse as Amazon, Barclay’s, Capital One, Harrah’s, Procter & Gamble, Wachovia, and the Boston Red Sox—illuminate how to leverage the power of analytics.
Author | : Adam Bohr |
Publisher | : Academic Press |
Total Pages | : 385 |
Release | : 2020-06-21 |
Genre | : Computers |
ISBN | : 0128184396 |
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author | : Ramesh Sharda |
Publisher | : |
Total Pages | : 832 |
Release | : 2020-03-06 |
Genre | : Business intelligence |
ISBN | : 9781292341552 |
For courses in decision support systems, computerized decision-making tools, and management support systems. Market-leading guide to modern analytics, for better business decisionsAnalytics, Data Science, & Artificial Intelligence: Systems for Decision Support is the most comprehensive introduction to technologies collectively called analytics (or business analytics) and the fundamental methods, techniques, and software used to design and develop these systems. Students gain inspiration from examples of organisations that have employed analytics to make decisions, while leveraging the resources of a companion website. With six new chapters, the 11th edition marks a major reorganisation reflecting a new focus -- analytics and its enabling technologies, including AI, machine-learning, robotics, chatbots, and IoT.
Author | : Azar, Ahmad Taher |
Publisher | : IGI Global |
Total Pages | : 685 |
Release | : 2020-12-05 |
Genre | : Mathematics |
ISBN | : 1799857905 |
The current literature on dynamic systems is quite comprehensive, and system theory’s mathematical jargon can remain quite complicated. Thus, there is a need for a compendium of accessible research that involves the broad range of fields that dynamic systems can cover, including engineering, life sciences, and the environment, and which can connect researchers in these fields. The Handbook of Research on Modeling, Analysis, and Control of Complex Systems is a comprehensive reference book that describes the recent developments in a wide range of areas including the modeling, analysis, and control of dynamic systems, as well as explores related applications. The book acts as a forum for researchers seeking to understand the latest theory findings and software problem experiments. Covering topics that include chaotic maps, predictive modeling, random bit generation, and software bug prediction, this book is ideal for professionals, academicians, researchers, and students in the fields of electrical engineering, computer science, control engineering, robotics, power systems, and biomedical engineering.
Author | : Miltiadis Lytras |
Publisher | : Academic Press |
Total Pages | : 292 |
Release | : 2021-10-22 |
Genre | : Medical |
ISBN | : 0128220627 |
Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers