Advances Of Evolutionary Computation Methods And Operators
Download Advances Of Evolutionary Computation Methods And Operators full books in PDF, epub, and Kindle. Read online free Advances Of Evolutionary Computation Methods And Operators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ashish Ghosh |
Publisher | : Springer Science & Business Media |
Total Pages | : 1001 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 3642189652 |
This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.
Author | : Erik Cuevas |
Publisher | : Springer |
Total Pages | : 214 |
Release | : 2016-01-20 |
Genre | : Technology & Engineering |
ISBN | : 3319285033 |
The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.
Author | : Thomas Baeck |
Publisher | : CRC Press |
Total Pages | : 374 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 1351989421 |
The field of evolutionary computation is expanding dramatically, fueled by the vast investment that reflects the value of applying its techniques. Culling material from the Handbook of Evolutionary Computation, Evolutionary Computation 1: Basic Algorithms and Operators contains up-to-date information on algorithms and operators used in evolutionary computing. This volume discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is intended to be used by individual researchers, teachers, and students working and studying in this expanding field.
Author | : Thomas Baeck |
Publisher | : CRC Press |
Total Pages | : |
Release | : 2017-06-29 |
Genre | : |
ISBN | : 9781138413078 |
Evolutionary Computation 2: Advanced Algorithms and Operators expands upon the basic ideas underlying evolutionary algorithms. The focus is on fitness evaluation, constraint-handling techniques, population structures, advanced techniques in evolutionary computation, and the implementation of evolutionary algorithms. It is intended to be used by individual researchers and students in the expanding field of evolutionary computation.
Author | : Benjamin Doerr |
Publisher | : Springer Nature |
Total Pages | : 527 |
Release | : 2019-11-20 |
Genre | : Computers |
ISBN | : 3030294145 |
This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.
Author | : A.E. Eiben |
Publisher | : Springer Science & Business Media |
Total Pages | : 328 |
Release | : 2007-08-06 |
Genre | : Computers |
ISBN | : 9783540401841 |
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Author | : Xin Yao |
Publisher | : World Scientific |
Total Pages | : 376 |
Release | : 1999-11-22 |
Genre | : Computers |
ISBN | : 9814518166 |
Evolutionary computation is the study of computational systems which use ideas and get inspiration from natural evolution and adaptation. This book is devoted to the theory and application of evolutionary computation. It is a self-contained volume which covers both introductory material and selected advanced topics. The book can roughly be divided into two major parts: the introductory one and the one on selected advanced topics. Each part consists of several chapters which present an in-depth discussion of selected topics. A strong connection is established between evolutionary algorithms and traditional search algorithms. This connection enables us to incorporate ideas in more established fields into evolutionary algorithms. The book is aimed at a wide range of readers. It does not require previous exposure to the field since introductory material is included. It will be of interest to anyone who is interested in adaptive optimization and learning. People in computer science, artificial intelligence, operations research, and various engineering fields will find it particularly interesting.
Author | : Jose A. Lozano |
Publisher | : Springer |
Total Pages | : 306 |
Release | : 2006-01-21 |
Genre | : Technology & Engineering |
ISBN | : 3540324941 |
Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.
Author | : Samuelson Hong, Wei-Chiang |
Publisher | : IGI Global |
Total Pages | : 357 |
Release | : 2013-03-31 |
Genre | : Computers |
ISBN | : 1466636297 |
Evolutionary computation has emerged as a major topic in the scientific community as many of its techniques have successfully been applied to solve problems in a wide variety of fields. Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation provides comprehensive research on emerging theories and its aspects on intelligent computation. Particularly focusing on breaking trends in evolutionary computing, algorithms, and programming, this publication serves to support professionals, government employees, policy and decision makers, as well as students in this scientific field.
Author | : Kenneth A. De Jong |
Publisher | : MIT Press |
Total Pages | : 267 |
Release | : 2006-02-03 |
Genre | : Computers |
ISBN | : 0262303337 |
A clear and comprehensive introduction to the field of evolutionary computation that takes an integrated approach. Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation. Although other books have described such particular areas of the field as genetic algorithms, genetic programming, evolution strategies, and evolutionary programming, Evolutionary Computation is noteworthy for considering these systems as specific instances of a more general class of evolutionary algorithms. This useful overview of a fragmented field is suitable for classroom use or as a reference for computer scientists and engineers.