Advances in Powder Metallurgy

Advances in Powder Metallurgy
Author: Isaac Chang
Publisher: Elsevier
Total Pages: 624
Release: 2013-08-31
Genre: Technology & Engineering
ISBN: 085709890X

Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques

Advances in powder metallurgy

Advances in powder metallurgy
Author: A. Simchi
Publisher: Elsevier Inc. Chapters
Total Pages: 32
Release: 2013-08-31
Genre: Technology & Engineering
ISBN: 0128088575

Warm compaction is a cost saving and effective method for obtaining high performance powder metallurgy (PM) parts. This chapter presents the principles of warm compaction and technical aspects of the process. The green and sintered properties of warm compacted parts are discussed and compared with conventionally (cold) produced compacts. The applications of the process for ferrous and non-ferrous PM parts are presented and future trends are outlined.

Advances in powder metallurgy

Advances in powder metallurgy
Author: F.H. Froes
Publisher: Elsevier Inc. Chapters
Total Pages: 57
Release: 2013-08-31
Genre: Technology & Engineering
ISBN: 0128088605

The major reason that there is not more widespread use of titanium and its alloys is the high cost. In this paper, developments in one cost effective approach to fabrication of titanium components – powder metallurgy – is discussed with respect to various aspects of this technology. These aspects are the blended elemental approach, prealloyed techniques, additive layer manufacturing, metal injection molding, spray deposition, far from equilibrium processing (rapid solidification mechanical alloying and vapor deposition) and porous materials. Use of titanium powder for sputtering targets, coating, as a grain refiner in aluminium alloys and fireworks are not addressed.