Advances in Knowledge Management

Advances in Knowledge Management
Author: Ettore Bolisani
Publisher: Springer
Total Pages: 226
Release: 2014-11-12
Genre: Business & Economics
ISBN: 3319095013

This book celebrates the past, present and future of knowledge management. It brings a timely review of two decades of the accumulated history of knowledge management. By tracking its origin and conceptual development, this review contributes to the improved understanding of the field and helps to assess the unresolved questions and open issues. For practitioners, the book provides a clear evidence of value of knowledge management. Lessons learnt from implementations in business, government and civil sectors help to appreciate the field and gain useful reference points. The book also provides guidance for future research by drawing together authoritative views from people currently facing and engaging with the challenge of knowledge management, who signal a bright future for the field.

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining
Author: Usama M. Fayyad
Publisher:
Total Pages: 638
Release: 1996
Genre: Computers
ISBN:

Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Advances in Knowledge Discovery and Management

Advances in Knowledge Discovery and Management
Author: Fabrice Guillet
Publisher: Springer Science & Business Media
Total Pages: 340
Release: 2010-06-11
Genre: Computers
ISBN: 3642005799

During the last decade, the French-speaking scientific community developed a very strong research activity in the field of Knowledge Discovery and Management (KDM or EGC for “Extraction et Gestion des Connaissances” in French), which is concerned with, among others, Data Mining, Knowledge Discovery, Business Intelligence, Knowledge Engineering and SemanticWeb. The recent and novel research contributions collected in this book are extended and reworked versions of a selection of the best papers that were originally presented in French at the EGC 2009 Conference held in Strasbourg, France on January 2009. The volume is organized in four parts. Part I includes five papers concerned by various aspects of supervised learning or information retrieval. Part II presents five papers concerned with unsupervised learning issues. Part III includes two papers on data streaming and two on security while in Part IV the last four papers are concerned with ontologies and semantic.

Advances in Distributed and Parallel Knowledge Discovery

Advances in Distributed and Parallel Knowledge Discovery
Author: Hillol Kargupta
Publisher: AAAI Press
Total Pages: 504
Release: 2000
Genre: Computers
ISBN:

This book presents introductions to DKD and PKD, extensive reviews of the field, and state-of-the-art techniques. Foreword by Vipin Kumar Knowledge discovery and data mining (KDD) deals with the problem of extracting interesting associations, classifiers, clusters, and other patterns from data. The emergence of network-based distributed computing environments has introduced an important new dimension to this problem--distributed sources of data. Traditional centralized KDD typically requires central aggregation of distributed data, which may not always be feasible because of limited network bandwidth, security concerns, scalability problems, and other practical issues. Distributed knowledge discovery (DKD) works with the merger of communication and computation by analyzing data in a distributed fashion. This technology is particularly useful for large heterogeneous distributed environments such as the Internet, intranets, mobile computing environments, and sensor-networks.When the data sets are large, scaling up the speed of the KDD process is crucial. Parallel knowledge discovery (PKD) techniques addresses this problem by using high-performance multiprocessor machines. This book presents introductions to DKD and PKD, extensive reviews of the field, and state-of-the-art techniques. Contributors Rakesh Agrawal, Khaled AlSabti, Stuart Bailey, Philip Chan, David Cheung, Vincent Cho, Joydeep Ghosh, Robert Grossman, Yi-ke Guo, John Hale, John Hall, Daryl Hershberger, Ching-Tien Ho, Erik Johnson, Chris Jones, Chandrika Kamath, Hillol Kargupta, Charles Lo, Balinder Malhi, Ron Musick, Vincent Ng, Byung-Hoon Park, Srinivasan Parthasarathy, Andreas Prodromidis, Foster Provost, Jian Pun, Ashok Ramu, Sanjay Ranka, Mahesh Sreenivas, Salvatore Stolfo, Ramesh Subramonian, Janjao Sutiwaraphun, Kagan Tummer, Andrei Turinsky, Beat Wüthrich, Mohammed Zaki, Joshua Zhang

Advances in Knowledge Discovery and Management

Advances in Knowledge Discovery and Management
Author: Bruno Pinaud
Publisher: Springer
Total Pages: 154
Release: 2017-10-09
Genre: Technology & Engineering
ISBN: 3319654063

This book is a collection of representative and novel works in the field of data mining, knowledge discovery, clustering and classification. Discussing both theoretical and practical aspects of “Knowledge Discovery and Management” (KDM), it is intended for researchers interested in these fields, including PhD and MSc students, and researchers from public or private laboratories. The contributions included are extended and reworked versions of six of the best papers that were originally presented in French at the EGC’2016 conference held in Reims (France) in January 2016. This was the 16th edition of this successful conference, which takes place each year, and also featured workshops and other events with the aim of promoting exchanges between researchers and companies concerned with KDM and its applications in business, administration, industry and public organizations. For more details about the EGC society, please consult egc.asso.fr.

Advances in Machine Learning and Data Mining for Astronomy

Advances in Machine Learning and Data Mining for Astronomy
Author: Michael J. Way
Publisher: CRC Press
Total Pages: 744
Release: 2012-03-29
Genre: Computers
ISBN: 1439841748

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines

Advances in Knowledge Discovery and Management

Advances in Knowledge Discovery and Management
Author: Rakia Jaziri
Publisher: Springer Nature
Total Pages: 207
Release: 2022-03-14
Genre: Technology & Engineering
ISBN: 3030902870

This book is a collection of high scientific novel contributions addressing several of these challenges. These articles are extended versions of a selection of the best papers that were initially presented at the French-speaking conferences EGC’2019held in Metz (France, January 21-25, 2019). These extended versions have been accepted after an additional peer-review process among papers already accepted in long format at the conference. Concerning the conference, the long and short papers selection were also the result of a double blind peer review process among the hundreds of papers initially submitted to each edition of the conference (acceptance rate for long papers is about 25%.

Knowledge Discovery in Multiple Databases

Knowledge Discovery in Multiple Databases
Author: Shichao Zhang
Publisher: Springer Science & Business Media
Total Pages: 250
Release: 2004-08-30
Genre: Computers
ISBN: 9781852337032

The Web has emerged as a large, distributed data repository, and information on the Internet and in existing transaction databases can be analyzed for commercial gains in decision making. Therefore, how to efficiently identify quality knowledge from different data sources uncovers a significant challenge. This challenge has attracted wide interest from both academia and the industry. Knowledge Discovery in Multiple Databases provides a comprehensive introduction to the latest advancements in multi-database mining, and presents a local-pattern analysis framework for pattern discovery from multiple data sources. Based on this framework, data preparation techniques in multiple databases, an application-independent database classification for data reduction, and efficient algorithms for pattern discovery from multiple databases are described. Knowledge Discovery in Multiple Databases is suitable for researchers, professionals and students in data mining, distributed data analysis, and machine learning, who are interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might involve knowledge discovery in databases and data mining.

Data Mining and Knowledge Discovery Technologies

Data Mining and Knowledge Discovery Technologies
Author: David Taniar
Publisher: IGI Global
Total Pages: 369
Release: 2008-01
Genre: Business & Economics
ISBN: 1599049600

As information technology continues to advance in massive increments, the bank of information available from personal, financial, and business electronic transactions and all other electronic documentation and data storage is growing at an exponential rate. With this wealth of information comes the opportunity and necessity to utilize this information to maintain competitive advantage and process information effectively in real-world situations. Data Mining and Knowledge Discovery Technologies presents researchers and practitioners in fields such as knowledge management, information science, Web engineering, and medical informatics, with comprehensive, innovative research on data mining methods, structures, tools, and methods, the knowledge discovery process, and data marts, among many other cutting-edge topics.