Advanced Studies of Fish Passage Through Culverts

Advanced Studies of Fish Passage Through Culverts
Author: Matthew David Blank
Publisher:
Total Pages: 428
Release: 2008
Genre: Culverts
ISBN:

Fish passage through culverts is an important component of road and stream crossing design. Although no comprehensive inventory of the number of culverts on fishbearing streams in the United States is available, there is an estimated 1.4 million streamroad crossings. The most common physical characteristics that create barriers to fish passage include excessive water velocity, insufficient water depth and large outlet drop heights. Over the past decade, interest in the effect culvert barriers have on aquatic systems has grown; accordingly, various passage assessment techniques have been used to determine whether a structure is a barrier and to what degree (its "barrierity"). Recent research has shown that determining the barrierity of a culvert is not trivial, and that different methods are often not congruent in their classification of "barrierity". The purpose of this research was to investigate the effect of velocity on fish passage in great detail by: testing the use of computational fluid dynamics (CFD) for estimating the 3-D velocity field through a culvert; quantifying velocity diversity through culverts for a range of flows; characterizing the energy expenditure paths through a culvert and identifying the passageways Yellowstone cutthroat trout used to successfully negotiate passage; and developing and testing a new barrier assessment method. The research was done, in part, by studying fish passage through culverts in Mulherin Creek, an important spawning tributary for Yellowstone cutthrout trout migrating from the Yellowstone River. Comparisons between predicted and observed velocities show 86% and 82% of variation in the observed velocity data were explained by the CFD model, for flow rates of 1.44 m3/s and 0.87 m3/s, respectively. The diverse velocity field through the culvert barrel created a range of energy expenditure paths through the entire culvert length. Fish movement observations showed successful passage only for trout seeking and using the minimum energy path created, in part, by the skew between the upstream channel and the culvert. This research investigated a new hydraulic approach to assessing barriers that uses the 3-D velocity field. Comparisons between estimated passage and measured passage show the 3-D method most accurately indicated passability compared to a 1-D method.

Fish Passage Through Culverts

Fish Passage Through Culverts
Author: Calvin O. Baker
Publisher:
Total Pages: 84
Release: 1990
Genre: Culverts
ISBN:

The success of fish migration through culverts is dependent on the swimming ability of the fish and the hydraulic conditions of the culvert. Properly designed and constructed culverts can minimize the impact on fish passage. Because culverts are typically more economical than bridges, it is appropriate to evaluate when to use culverts and to predict the effects of such culvert installations. During the consideration of alternatives for structures for fish passage, culverts should not be automatically eliminated. This publication has tried to examine the aspects of culvert design and operation relative to the existing information that has been published in previous studies. Ideally, a culvert installation should not change the conditions that existed prior to that installation. This means that the cross-sectional area should not be restricted by the culvert, the slope should not change, and the roughness coefficients should remain the same. Any change in these conditions will result in a velocity change which could alter the sediment transportation capacity of the stream. A truly successful culvert design would include matching the velocities of the fish's swimming zone in the culvert to the swimming capacity of the design fish. Unfortunately, not enough research has been completed to make this an acceptable criterion of culvert design. This approach is preferred because it is easier to reduce the velocities in the swimming zone by increasing the boundary roughness than it is to reduce the mean velocity of the entire culvert. This publication contains some relatively simple guidelines which can reduce the installation problems of culverts in streams containing migrating fish when combined with the expertise of an experience fish biologist, engineer, and hydrologist.

Fish Passage in Large Culverts with Low Flows

Fish Passage in Large Culverts with Low Flows
Author: U.s. Department of Transportation
Publisher: CreateSpace
Total Pages: 140
Release: 2015-03-10
Genre: Technology & Engineering
ISBN: 9781508810889

Historically, culverts have been designed for hydraulic efficiency without consideration of fish passage or, more generally, aquatic organism passage. Over time, it has become apparent that culverts frequently become impediments to healthy aquatic ecosystems because they can prevent the movement of fish and other aquatic organisms upstream and downstream through the culvert. Therefore, aquatic organism passage through culverts has become an important design element component for road/stream crossings. Common physical characteristics that may create barriers include high water velocity, shallow water depth, large outlet drop heights, turbulence within the culvert, and accumulation of debris. Sediment deposition and erosion at the culvert may also create a barrier to passage. Culvert length, slope, and roughness may create conditions that impede passage as well. Further complicating design is that passage needs differ by species, life stage, and season. To address this complex task, the Federal Highway Administration (FHWA) developed a stream simulation approach for designing culverts. Stream simulation is based on the concept that if conditions inside a culvert are similar to those conditions in the stream upstream and downstream of the culvert, then aquatic organism passage will be provided without consideration of the specific physical requirements of one or more species. However, stream simulation is not appropriate for all situations. For example, an existing culvert that is blocking passage may not be a good candidate for replacement using stream simulation because of the size of the embankment or insufficient budget for a replacement. Applications of stream simulation may also be limited for new culvert installations. Site constraints or budget limits could dictate a smaller culvert installation than would be recommended by stream simulation. In these cases, it may be desirable to design a culvert crossing considering the specific passage needs of a specific species of fish. Doing so requires an understanding of the migration seasonality, life stage swimming capabilities, and stream flow rates expected during passage. Ideally, this information is developed by a multidisciplinary team of aquatic biologists, hydrologists, and engineers. From this information, the maximum velocity and minimum depth requirements for the target fish are derived. Considering only average velocity in a culvert masks that there are zones within the flow field where velocities both higher and lower than the average exist. The objective of this research is to assist in the design of culverts for fish passage by 1) identifying zones of lower velocity that are conducive to fish passage and 2) developing practical design methods quantifying these lower velocity zones.

Hydraulics and Performance Evaluations of Fish Passages Based on Computational Fluid Dynamics and Individual-based Methods

Hydraulics and Performance Evaluations of Fish Passages Based on Computational Fluid Dynamics and Individual-based Methods
Author: Yi Xuan Zeng
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Fish passages have been used as an important tool to restore the connectivity of rivers segmented by dams and weirs. However, due to the complexity of rivers, structures, and fish biology, numerous existing fishways only achieved very limited success at considerable cost (Silva et al., 2018a). Reasons for the failures or inefficiencies results often ascribe the poor understandings of fishway hydraulics and fish response to these flow characteristics. Consequentially, oversimplified design methods and build-and-test paradigms are used in practice. To improve the fishway design methodology, this thesis developed numerical models and practical tools. Because of its popularity in fishway community, the first part of this thesis investigated hydraulics condition of Nature-like fish passage (NLFP), which is made of a series of rock weirs. Typical engineering design of rock weirs relies on simplified, one-dimensional equations dependent on empirical coefficients. However, most simplified methods fail to accurately predict the hydraulics through rock weirs because they do not consider flow through interstitial spaces between rocks and the way interstitial flow alters the head-discharge relationship. To improve the design methodology and to better capture the complex hydraulics past rock weirs, a three-dimensional, high-resolution computational fluid dynamics (CFD) model was utilized to study the problem. The simulation results demonstrate that the flow phenomena and head-discharge relationship are significantly different between broad-crest weirs and rock weirs. The interstitial spaces between rocks not only drain a portion of total discharge, but also accelerate the weir overflow. Based on the results, a flow decomposition approach is proposed to quantify the discharge through a rock weir. The decomposition includes contributing flows from (1) weir flow over the individual rocks and (2) interstitial flow between rocks. The applicability of the proposed decomposition was demonstrated with an independent case. For practical use of the proposed flow decomposition method, a Python-based design tool was developed. The second part of this thesis developed a fish behavior model to predict fish migrating movement for various applications. When designing fish passage for migrating fish, two important questions need to be answered: (1) whether they can swim through the fish passage and (2) whether fish can find the entrance of fish passage. This thesis work developed a new open-source, three-dimensional fish behavior model and demonstrated the capability of this fish model by answering the two questions in Chapter 3 and Chapter 4, respectively. Chapter 3 reports the implementation and application of an Eulerian-Lagrangian Agent Model (ELAM) on the popular computational physics platform OpenFOAM, called ELAM-OF. ELAM models use the Eulerian framework for the flow field simulation and the Lagrangian framework to model individual fish's sensory region and track its movement, which is based on a set of rules for fish behaviors. The fish behavior model and rules are adapted from the Eulerian-Lagrangian Agent Model in Goodwin et al. (2006) and Goodwin et al. (2014), which has shown success in engineering applications. The advantage of ELAM-OF is that it provides a framework for using unstructured meshes to model complex domains such as fish passage and natural rivers. The modualized design of ELAM-OF makes it easy to "plug-and-play" different components such as flow solvers, fish behavior rules, stimuli, and both migrating directions. Chapter 3 shows the calibration, validation, and application of upstream migration through a vertical slot fishway. The analysis uncovered fish passing routes, patterns, failures, and efficacy, which demonstrates the capability of the proposed ELAM-OF model to evaluate fish response before fishway construction. To investigate if fish can find the entrance, Chapter 4 introduces a workflow and toolset to solve the problem in a wider domain with a longer time horizon. The workflow converts the flow results in popular 2D hydraulics models such as SRH-2D and HEC-RAS 2D into the format of the fish behavior and tracking model ELAM-OF. The conversion involves both mesh and flow results. The converted hydraulic model data are then used by the ELAM-OF model to track the movement of individual fish particles. A real-world case was simulated for the York Haven Dam on the Susquehanna River where data from a fish tagging and monitoring study were used for calibration. The case shows that the tools developed in this work can successfully complete the workflow and the simulated fish movement results qualitatively compare well with field data. The simulated results were then further analyzed to explain the low efficacy of the existing fish ladder and confirm the feasibility of the location of a new fish passage. In conclusion, this ELAM-OF model provides an effective and efficient way to evaluate the location and efficacy of the planned fish passage before construction, which help prevent the expensive and inefficient build-and-test paradigm in current practice.

Modeling Fish Passage and Energy Expenditure for American Shad in a Steeppass Fishway Using a Computational Fluid Dynamics Model

Modeling Fish Passage and Energy Expenditure for American Shad in a Steeppass Fishway Using a Computational Fluid Dynamics Model
Author: Kathryn Elizabeth Plymesser
Publisher:
Total Pages: 324
Release: 2014
Genre: Algorithms
ISBN:

The Alaska steeppass is a fishway used extensively in the eastern U.S. and in remote locations. The baffles in the steeppass fishway tend to reduce water velocity to magnitudes negotiable by many species. A computational fluid dynamics (CFD) model was developed for common combinations of fishway slope and head pond elevation. Three-dimensional hydraulics information from the CFD model was used as a basis to predict passage success for American shad in the steeppass. The passage model considered six unique algorithms for swim path during ascent, and both the optimal swim speed approach of Castro-Santos (2005) and newly developed swim-speed information based on the laboratory study of Haro, Odeh, Castro-Santos, and Noreika (1999). The passage model was incorporated into a Monte Carlo framework to facilitate robust comparisons between the passage success predicted by the model and the experimental observations of Haro, Odeh, Castro-Santos, and Noreika (1999). The methods of Webb (1975) and Belke (1991) were then adapted to develop predictions of the energy expenditure of American shad. Findings included the observation that fish in the laboratory study did not tend to utilize the distance-optimizing prolonged swim speed of Castro-Santos (2005), but instead travelled at a faster velocity (more similar to the distance-optimizing burst speed) that resulted in significantly lower energy expenditures. The passage model did not indicate that the steeppass fishway presented a substantial velocity challenge to American shad. Comparisons of the passage model results with passage success in the study by Haro, Odeh, Castro-Santos, and Noreika (1999) led to the observation that other hydraulic factors (such as turbulence) or volitional issues should be the subject of further studies. The passage model was reformulated, creating a conceptual fishway of infinite length, to examine the distance at which model fish fail due to fatigue. The infinite-length model predicted that a fishway of 25 feet in length passed 99.0% of fish without fatigue failure. The velocity distributions from the CFD models also suggested that the zones of low velocity that existed near the bottom of the fishway under high head conditions may be desirable for successful ascent.

Fish Swimming in Turbulent Waters

Fish Swimming in Turbulent Waters
Author: Hubert Chanson
Publisher: CRC Press
Total Pages: 0
Release: 2020-09-13
Genre: Technology & Engineering
ISBN: 100004999X

Low-level river crossings, including culverts, are important for delivering a range of valuable socioeconomic services, including transportation and hydrological control. These structures are also known to have negative impacts on freshwater river system morphology and ecology, including the blockage of upstream fish passage, particularly small-body-mass fish species. Given the enormous environmental problems created by road crossings, new hydraulic engineering guidelines are proposed for fish-friendly multi-cell box culvert designs. The focus of these guidelines is on smooth box culverts without appurtenance, with a novel approach based upon three basic concepts: (I) the culvert design is optimized for fish passage for small to medium water discharges, and for flood capacity for larger discharges, (II) low-velocity zones are provided along the wetted perimeter in the culvert barrel, and quantified in terms of a fraction of the wetted flow area where the local longitudinal velocity is less than a characteristic fish speed linked to swimming performances of targeted fish species, and (III) the culvert barrel is smooth, without any other form of boundary treatment and appurtenance. The present monograph develops a number of practical considerations, in particular relevant to box culvert operations for less-than-design discharges. It is argued that upstream fish passage capabilities would imply a revised approach to maintenance, in part linked to the targeted fish species. This reference work is authored for civil and environmental engineers, as well as biology and ecology scientists interested in culvert design. While the book is aimed to professionals, the material is also lectured in postgraduate courses and in professional short courses.

Evaluation of 1-D and 2-D Hydraulic Models for Designing and Assessing Fullspan Stream Crossings

Evaluation of 1-D and 2-D Hydraulic Models for Designing and Assessing Fullspan Stream Crossings
Author: Alyssa Sachiko Virgil
Publisher:
Total Pages: 271
Release: 2020
Genre: Bridges
ISBN:

This project compared design decisions and hydraulic analyses of full-span stream crossings using one- and two-dimensional (1-D and 2-D) hydraulic models. The project was initiated by the California Department of Transportation’s interest in moving from 1-D to 2-D hydraulic modeling and by the Federal Highways Administration’s support for adopting SRH-2D (Sedimentation and River Hydraulics-2D developed by the US Bureau of Reclamation) in Aquaveo, LLC’s Surface-water Modeling System as their standard design model. Two-dimensional hydraulic models calculate more detailed water depths and velocities than 1-D models, which can better identify fish passage conditions, areas of potential scour or deposition, and aquatic organism habitat characteristics. The project evaluated two recently constructed full-span (channel spanning) crossings that were designed based on HEC-RAS 1-D model analysis and constructed in 2017. The 1-D hydraulic models were not available for either of the projects, so the 1-D model results within the final project reports were used for comparison with 2-D model results completed for this project. Little Mill Creek crossing is a bridge with five rock weirs installed in the channel below located in Del Norte County, California. North Fork Ryan Creek is located in Mendocino County and is a box culvert with inlet and outlet headwalls and rock weirs installed both upstream and downstream of the crossing. The sites were re-surveyed in 2019 and 2020, and current conditions were modeled using SRH-2D. Current site conditions and 2-D model depth and velocity results were used to identify design elements that may have been designed differently using a 2-D model analysis in an effort to inform future full-span crossing design processes. Using local 2-D model velocities for bank rock slope protection or riprap (RSP) sizing and abutment scour calculations resulted in differences in RSP size recommendations and abutment scour depth estimations. For Little Mill Creek Bridge, the RSP was estimated to be currently undersized, while at North Fork Ryan Creek crossing the RSP was oversized compared to the 2-D analysis based calculations. The local velocities and water depths available from 2-D model results provide greater spatial detail of the estimated forces experienced at the banks and abutments and account for local turbulence. In terms of practicality, model efficiency and computing power continue to increase, making 2-D modeling more accessible. Computer processing time was found to increase linearly with the number of mesh elements so model run times are not likely to limit 2-D modeling for stream crossing sites. Sites with expansive floodplains could experience longer run times if detailed results, and therefore more mesh elements, are needed on the floodplain.