Advanced Non Thermal Power Generation Systems
Download Advanced Non Thermal Power Generation Systems full books in PDF, epub, and Kindle. Read online free Advanced Non Thermal Power Generation Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yatish T. Shah |
Publisher | : CRC Press |
Total Pages | : 593 |
Release | : 2023-11-08 |
Genre | : Technology & Engineering |
ISBN | : 1000969312 |
Generally, sources for power generation are broken down into two categories: thermal and non-thermal. Thermal sources for power generation include combustion, geothermal, solar, nuclear, and waste heat, which essentially provide heat as a means for power generation. This book examines non-thermal (mechanical, electrochemical, nanoscale self-powered, and hybrid) sources of power generation and emphasizes recent advances in distributed power generation systems. Key Features Details recent advances made in wind power, including onshore, offshore, fixed and floating platform, and air wind energy systems, and offers detailed assessments of progress Covers advances in generation of hydropower, exploring dam hydropower, novel wave energy converters, and novel systems and turbines for hydrokinetic energy conversion to power Examines all types of fuel cells and their multi-functional roles, along with hybrid fuel cell systems in complete detail Explores advances in the development of self-powered nanogenerators for use in portable, wearable, and implantable power electronics Focuses on technologies with the best commercial possibilities and provides perspectives on future challenges that need to be solved This book will be of value to all researchers in academia, industry, and government interested in pursuing power generation technologies and seeking a comprehensive understanding of available and emerging non-thermal power generation sources. Readers who are interested in learning about thermal power generation sources can find it in the author’s companion text Advanced Power Generation Systems: Thermal Sources (2023).
Author | : Ibrahim Dincer |
Publisher | : Academic Press |
Total Pages | : 657 |
Release | : 2014-07-15 |
Genre | : Technology & Engineering |
ISBN | : 0123838614 |
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Author | : Paul Breeze |
Publisher | : Elsevier |
Total Pages | : 289 |
Release | : 2005-02-04 |
Genre | : Technology & Engineering |
ISBN | : 0080480101 |
This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form.Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies.Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses.· Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable· Describes the workings and environmental impact of each technology· Evaluates the economic viability of each different power generation system
Author | : Ronald DiPippo |
Publisher | : Elsevier |
Total Pages | : 977 |
Release | : 2024-10-11 |
Genre | : Science |
ISBN | : 044324751X |
Geothermal Power Generation, New Developments and Innovations, Second Edition provides an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security. Edited by respected and leading experts in the field, this book provides a comprehensive overview of the major aspects of geothermal power production. Chapters cover resource discovery, resource characterization, energy conversion systems, design, economic considerations, and a range of fascinating and updated case studies from across the world.Geothermal resources are considered renewable and are currently the only renewable source able to generate baseload electricity while producing very low levels of greenhouse gas emissions, thus playing a key role in future energy needs. - Provides readers with a comprehensive and systematic overview of geothermal power generation - Presents an update to advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security - Edited by authorities in the field and contributed to by global experts in their areas - Supports sustainability and the United Nations Sustainable Development Goals (UN SDGs) 7, 9, 11 and 13
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 303 |
Release | : 1995-06-13 |
Genre | : Science |
ISBN | : 0309052327 |
The U.S. Department of Energy (DOE) was given a mandate in the 1992 Energy Policy Act (EPACT) to pursue strategies in coal technology that promote a more competitive economy, a cleaner environment, and increased energy security. Coal evaluates DOE's performance and recommends priorities in updating its coal program and responding to EPACT. This volume provides a picture of likely future coal use and associated technology requirements through the year 2040. Based on near-, mid-, and long-term scenarios, the committee presents a framework for DOE to use in identifying R&D strategies and in making detailed assessments of specific programs. Coal offers an overview of coal-related programs and recent budget trends and explores principal issues in future U.S. and foreign coal use. The volume evaluates DOE Fossil Energy R&D programs in such key areas as electric power generation and conversion of coal to clean fuels. Coal will be important to energy policymakers, executives in the power industry and related trade associations, environmental organizations, and researchers.
Author | : Digambar M. Tagare |
Publisher | : John Wiley & Sons |
Total Pages | : 406 |
Release | : 2011-09-23 |
Genre | : Technology & Engineering |
ISBN | : 0470872667 |
This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works.
Author | : Paweł Madejski |
Publisher | : BoD – Books on Demand |
Total Pages | : 171 |
Release | : 2018-05-02 |
Genre | : Technology & Engineering |
ISBN | : 1789230780 |
The demand for electricity and heat production is still largely covered by conventional thermal power plants based on fossil fuel combustion. Thermal power stations face a big challenge to meet the environmental requirements constantly keeping high process efficiency and avoiding lifetime shortening of critical components. In recent years, many activities have been observed to reduce pollutant emissions and optimize performance in thermal power plants. Increased share of renewable sources of energy in domestic markets enforces flexible operation and fast adjustment to actual demand. Gas power plants start to play a very important role in this process, allowing for rapid change of load and emission reduction. Operation under changing load together with keeping emissions at the accurate level requires constantly introducing new solutions and technologies as well as carrying out many research and development activities for optimization of the electricity and heat production process. The edited book is aimed to present new technologies, innovative solutions, measurement techniques, tools and computational methods dedicated to thermal power plants in the light of new trends and challenges.
Author | : Yatish T. Shah |
Publisher | : |
Total Pages | : 0 |
Release | : 2024 |
Genre | : Electric power production |
ISBN | : 9781032552842 |
Generally, sources for power generation are broken down into two categories: thermal and non-thermal. Thermal sources for power generation include combustion, geothermal, solar, nuclear, and waste heat, which essentially provide heat as a means for power generation. This book examines non-thermal (mechanical, electrochemical, nanoscale self-powered, and hybrid) sources of power generation and emphasizes recent advances in distributed power generation systems. Key Features Details recent advances made in wind power, including onshore, offshore, fixed and floating platform, and air wind energy systems, and offers detailed assessments of progress Covers advances in generation of hydropower, exploring dam hydropower, novel wave energy converters, and novel systems and turbines for hydrokinetic energy conversion to power Examines all types of fuel cells and their multi-functional roles, along with hybrid fuel cell systems in complete detail Explores advances in the development of self-powered nanogenerators for use in portable, wearable, and implantable power electronics Focuses on technologies with the best commercial possibilities and provides perspectives on future challenges that need to be solved This book will be of value to all researchers in academia, industry, and government interested in pursuing power generation technologies and seeking a comprehensive understanding of available and emerging non-thermal power generation sources. Readers who are interested in learning about thermal power generation sources can find it in the author's companion text Advanced Power Generation Systems: Thermal Sources (2023).
Author | : National Academies of Sciences, Engineering, and Medicine |
Publisher | : National Academies Press |
Total Pages | : 341 |
Release | : 2016-09-30 |
Genre | : Science |
ISBN | : 0309371422 |
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
Author | : Jaume Salom |
Publisher | : CRC Press |
Total Pages | : 337 |
Release | : 2022-09-01 |
Genre | : Technology & Engineering |
ISBN | : 1000799352 |
The rapid increase of cloud computing, high performance computing (HPC) and the vast growth in Internet and Social Media use have aroused the interest in energy consumption and the carbon footprint of Data Centres. Data Centres primarily contain electronic equipment used for data processing (servers), data storage (storage equipment), and communications (network equipment). Collectively, this equipment processes, stores, and transmits digital information and is known as information technology (IT) equipment. Advanced Concepts for Renewable Energy Supply of Data Centres introduces a number of technical solutions for the supply of power and cooling energy into Data Centres with enhanced utilisation of renewable energy sources in order to achieve low energy Data Centres. Because of the high energy density nature of these unique infrastructures, it is essential to implement energy efficiency measures and reduce consumption before introducing any renewable energy source. A holistic approach is used with the objective of integrating many technical solutions such as management of the IT (Information Technology) load, efficient electrical supply to the IT systems, Low-Ex air-conditioning systems, interaction with district heating and cooling networks, re-use of heat, free cooling (air, seawater, groundwater), optimal use of heat and cold storage, electrical storage and integration in smart grids. This book is therefore a catalogue of advanced technical concepts that could be integrated into Data Centres portfolio in order to increase the overall efficiency and the share of renewable energies in power and cooling supply. Based on dynamic energy models implemented in TRNSYS some concepts are deeply evaluated through yearly simulations. The results of the simulation are illustrated with Sankey charts, where the energy flows per year within the subsystems of each concept for a selected scenario are shown, and graphs showing the results of parametric analysis. A set of environmental metrics (as the non-renewable primary energy) and financial metrics (CAPEX and OPEX) as well of energy efficiency metrics like the well-known PUE, are described and used to evaluate the different technical concepts.