Advanced Mathematics for Engineers with Applications in Stochastic Processes

Advanced Mathematics for Engineers with Applications in Stochastic Processes
Author: Aliakbar Montazer Haghighi
Publisher: Nova Science Publishers
Total Pages: 0
Release: 2010
Genre: Functions of several complex variables
ISBN: 9781608768806

Topics in advanced mathematics for engineers, probability and statistics typically span three subject areas, are addressed in three separate textbooks and taught in three different courses in as many as three semesters. Due to this arrangement, students taking these courses have had to shelf some important and fundamental engineering courses until much later than is necessary. This practice has generally ignored some striking relations that exist between the seemingly separate areas of statistical concepts, such as moments and estimation of Poisson distribution parameters. On one hand, these concepts commonly appear in stochastic processes -- for instance, in measures on effectiveness in queuing models. On the other hand, they can also be viewed as applied probability in engineering disciplines -- mechanical, chemical, and electrical, as well as in engineering technology. There is obviously, an urgent need for a textbook that recognises the corresponding relationships between the various areas and a matching cohesive course that will see through to their fundamental engineering courses as early as possible. This book is designed to achieve just that. Its seven chapters, while retaining their individual integrity, flow from selected topics in advanced mathematics such as complex analysis and wavelets to probability, statistics and stochastic processes.

Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

Advanced Mathematical Tools for Automatic Control Engineers: Volume 2
Author: Alexander S. Poznyak
Publisher: Elsevier
Total Pages: 568
Release: 2009-08-13
Genre: Technology & Engineering
ISBN: 0080914039

Advanced Mathematical Tools for Automatic Control Engineers, Volume 2: Stochastic Techniques provides comprehensive discussions on statistical tools for control engineers. The book is divided into four main parts. Part I discusses the fundamentals of probability theory, covering probability spaces, random variables, mathematical expectation, inequalities, and characteristic functions. Part II addresses discrete time processes, including the concepts of random sequences, martingales, and limit theorems. Part III covers continuous time stochastic processes, namely Markov processes, stochastic integrals, and stochastic differential equations. Part IV presents applications of stochastic techniques for dynamic models and filtering, prediction, and smoothing problems. It also discusses the stochastic approximation method and the robust stochastic maximum principle. Provides comprehensive theory of matrices, real, complex and functional analysis Provides practical examples of modern optimization methods that can be effectively used in variety of real-world applications Contains worked proofs of all theorems and propositions presented

Stochastic Processes in Engineering Systems

Stochastic Processes in Engineering Systems
Author: E. Wong
Publisher: Springer Science & Business Media
Total Pages: 372
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461250609

This book is a revision of Stochastic Processes in Information and Dynamical Systems written by the first author (E.W.) and published in 1971. The book was originally written, and revised, to provide a graduate level text in stochastic processes for students whose primary interest is its applications. It treats both the traditional topic of sta tionary processes in linear time-invariant systems as well as the more modern theory of stochastic systems in which dynamic structure plays a profound role. Our aim is to provide a high-level, yet readily acces sible, treatment of those topics in the theory of continuous-parameter stochastic processes that are important in the analysis of information and dynamical systems. The theory of stochastic processes can easily become abstract. In dealing with it from an applied point of view, we have found it difficult to decide on the appropriate level of rigor. We intend to provide just enough mathematical machinery so that important results can be stated PREFACE vi with precision and clarity; so much ofthe theory of stochastic processes is inherently simple if the suitable framework is provided. The price of providing this framework seems worth paying even though the ul timate goal is in applications and not the mathematics per se.

Stochastic Tools in Mathematics and Science

Stochastic Tools in Mathematics and Science
Author: Alexandre J. Chorin
Publisher: Springer Science & Business Media
Total Pages: 193
Release: 2014-01-21
Genre: Mathematics
ISBN: 1461469805

"Stochastic Tools in Mathematics and Science" covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. The topics covered include conditional expectations, stochastic processes, Brownian motion and its relation to partial differential equations, Langevin equations, the Liouville and Fokker-Planck equations, as well as Markov chain Monte Carlo algorithms, renormalization, basic statistical mechanics, and generalized Langevin equations and the Mori-Zwanzig formalism. The applications include sampling algorithms, data assimilation, prediction from partial data, spectral analysis, and turbulence. The book is based on lecture notes from a class that has attracted graduate and advanced undergraduate students from mathematics and from many other science departments at the University of California, Berkeley. Each chapter is followed by exercises. The book will be useful for scientists and engineers working in a wide range of fields and applications. For this new edition the material has been thoroughly reorganized and updated, and new sections on scaling, sampling, filtering and data assimilation, based on recent research, have been added. There are additional figures and exercises. Review of earlier edition: "This is an excellent concise textbook which can be used for self-study by graduate and advanced undergraduate students and as a recommended textbook for an introductory course on probabilistic tools in science." Mathematical Reviews, 2006

Probability with Applications in Engineering, Science, and Technology

Probability with Applications in Engineering, Science, and Technology
Author: Matthew A. Carlton
Publisher: Springer
Total Pages: 776
Release: 2014-09-03
Genre: Mathematics
ISBN: 9781493903962

This book provides a contemporary and lively postcalculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. A one-term course would cover material in the core chapters (1-4), hopefully supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8). The last chapter is specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise. Alternatively, there is certainly enough material for those lucky enough to be teaching or taking a year-long course. Most of the core will be accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the later, more advanced chapters. One unique feature of this book is the inclusion of sections that illustrate the importance of software for carrying out simulations when answers to questions cannot be obtained analytically; R and Matlab code are provided so that students can create their own simulations. Another feature that sets this book apart is the Introduction, which addresses the question “Why study probability?” by surveying selected examples from recent journal articles and discussing some classic problems whose solutions run counter to intuition. The book contains about 1100 exercises, ranging from straightforward to reasonably challenging; roughly 700 of these appear in the first four chapters. The book’s preface provides more information about our purpose, content, mathematical level, and suggestions for what can be covered in courses of varying duration.

Advanced Mathematics for Engineers and Physicists

Advanced Mathematics for Engineers and Physicists
Author: Angel Popescu
Publisher:
Total Pages: 0
Release: 2022
Genre: Calculus of variations
ISBN: 9783031215032

This book is designed to be an introductory course to some basic chapters of Advanced Mathematics for Engineering and Physics students, researchers in different branches of Applied Mathematics and anyone wanting to improve their mathematical knowledge by a clear, live, self-contained and motivated text. Here, one can find different topics, such as differential (first order or higher order) equations, systems of differential equations, Fourier series, Fourier and Laplace transforms, partial differential equations, some basic facts and applications of the calculus of variations and, last but not least, an original and more intuitive introduction to probability theory. All these topics are carefully introduced, with complete proofs, motivations, examples, applications, problems and exercises, which are completely solved at the end of the book. We added a generous supplementary material (11.1) with a self-contained and complete introduction to normed, metric and Hilbert spaces. Since we used some topics from complex function theory, we also introduced in Chapter 11 a section (11.2) with the basic facts in this important field. What a reader needs for a complete understanding of this book? For a deep understanding of this book, it is required to take a course in undergraduate calculus and linear algebra. We mostly tried to use the engineering intuition instead of insisting on mathematical tricks. The main feature of the material presented here is its clarity, motivation and the genuine desire of the authors to make extremely transparent the "mysterious" mathematical tools that are used to describe and organize the great variety of impressions that come to the searching mind, from the infinite complexity of Nature. The book is recommended not only to engineering and physics students or researchers but also to junior students in mathematics because it shows the connection between pure mathematics and physical phenomena, which always supply motivations for mathematical discoveries.

Stochastic Calculus

Stochastic Calculus
Author: Mircea Grigoriu
Publisher: Springer Science & Business Media
Total Pages: 784
Release: 2013-12-11
Genre: Mathematics
ISBN: 0817682287

Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties needed to develop reliable artificial joints vary significantly with individual and age, forces acting on a plane from takeoff to landing depend in a complex manner on the environmental conditions and flight pattern, and stock prices and their evolution in time depend on a large number of factors that cannot be described by deterministic models. Problems that can be defined by algebraic, differential, and integral equations with random coefficients and/or input are referred to as stochastic problems. The main objective of this book is the solution of stochastic problems, that is, the determination of the probability law, moments, and/or other probabilistic properties of the state of a physical, economic, or social system. It is assumed that the operators and inputs defining a stochastic problem are specified.

Stochastic Processes in Physics and Engineering

Stochastic Processes in Physics and Engineering
Author: Sergio Albeverio
Publisher: Springer
Total Pages: 438
Release: 1988-01-31
Genre: Gardening
ISBN:

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. O. K. Chesterton. The Scandal of Father 'The Hermit Qad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu!ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Introduction to Probability and Stochastic Processes with Applications

Introduction to Probability and Stochastic Processes with Applications
Author: Liliana Blanco Castañeda
Publisher: John Wiley & Sons
Total Pages: 613
Release: 2014-08-21
Genre: Mathematics
ISBN: 1118344960

An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work.