Strengthening Design of Reinforced Concrete with FRP

Strengthening Design of Reinforced Concrete with FRP
Author: Hayder A. Rasheed
Publisher: CRC Press
Total Pages: 246
Release: 2014-12-16
Genre: Technology & Engineering
ISBN: 1482235595

Strengthening Design of Reinforced Concrete with FRP establishes the art and science of strengthening design of reinforced concrete with fiber-reinforced polymer (FRP) beyond the abstract nature of the design guidelines from Canada (ISIS Canada 2001), Europe (FIB Task Group 9.3 2001), and the United States (ACI 440.2R-08). Evolved from thorough cla

Shear Strengthening of T-beam with GFRP

Shear Strengthening of T-beam with GFRP
Author: Kishor Chandra Panda
Publisher: Springer
Total Pages: 205
Release: 2018-04-27
Genre: Technology & Engineering
ISBN: 9811077606

This book presents a systematic approach to the experimental, theoretical, and numerical investigation of reinforced concrete (RC) T-beams strengthened in shear with glass-fibre-reinforced polymers (GFRP) with variation in transverse steel reinforcements. It discusses experiments conducted on simply supported RC T-beams for control beams with and without transverse steel reinforcements and beams strengthened in shear with GFRP sheets and strips in different configurations, orientations, and variation of layers for each type of stirrup spacing. The book also includes a detailed numerical study using ANSYS performed in two stages. The first stage consists of selecting and testing relevant materials in the laboratory to establish the physical and mechanical properties of the materials. The second stage then involves testing beams for shear under two-point static loading systems. The test results demonstrate the advantage of using an externally applied, epoxy-bonded GFRP sheets and strips to increase the shear capacity of the beams. The finite element method (FEM) analysis results verify the experimental results. The book will serve as a valuable resource for researchers and practicing civil engineers alike.

Reinforced Concrete Structures

Reinforced Concrete Structures
Author: Robert Park
Publisher: John Wiley & Sons
Total Pages: 794
Release: 1991-01-16
Genre: Technology & Engineering
ISBN: 9780471659174

Sets out basic theory for the behavior of reinforced concrete structural elements and structures in considerable depth. Emphasizes behavior at the ultimate load, and, in particular, aspects of the seismic design of reinforced concrete structures. Based on American practice, but also examines European practice.

FRP Composites for Reinforced and Prestressed Concrete Structures

FRP Composites for Reinforced and Prestressed Concrete Structures
Author: Perumalsamy Balaguru
Publisher: CRC Press
Total Pages: 334
Release: 2008-11-05
Genre: Technology & Engineering
ISBN: 1482288532

High strength fibre composites (FRPs) have been used with civil structures since the 1980s, mostly in the repair, strengthening and retrofitting of concrete structures. This has attracted considerable research, and the industry has expanded exponentially in the last decade. Design guidelines have been developed by professional organizations in a nu

Externally applied FRP reinforcement for concrete structures

Externally applied FRP reinforcement for concrete structures
Author: FIB – International Federation for Structural Concrete
Publisher: FIB - International Federation for Structural Concrete
Total Pages: 242
Release: 2019-05-01
Genre: Technology & Engineering
ISBN: 2883941327

In December 1996, CEB established a Task Group with the main objective to elaborate design guidelines for the use of FRP reinforcement in accordance with the design format of the CEB-FIP Model Code and Eurocode2. With the merger of CEB and FIP into fib in June 1998, this Task Group became fib TG 9.3 FRP Reinforcement for concrete structures in Commission 9 Reinforcing and Prestressing Materials and Systems. Finally, as a result of the restructuring of fib’s Commissions and Task Groups at the end of 2014, the Task Group became fib T5.1 FRP Reinforcement for concrete structures, chaired by Stijn Matthys at Ghent University, in Commission 5 Reinforcements. The work of former TG 9.3 and current T5.1 was performed by two working parties (WP), one of which is “Externally Applied Reinforcement” (EAR), which produced fib bulletin 14 “Externally bonded FRP reinforcement for RC structures” in July 2001. Following a number of years of relatively slow activity, the WP on externally applied reinforcement was reactivated and started working on an update of bulletin 14. The result of this work is summarised in the present technical report, which aims to give design guidelines on the use of externally applied FRP reinforcement (both externally bonded and near-surface mounted) for concrete structures. An attempt has been made to present some of the topics in a Eurocode-compatible format, so that the material covered may form the basis for the introduction of composites in the next version of Eurocode 2 and for the updating of the text on seismic retrofitting with composites in the next version of Eurocode 8. All persons who participated in the preparation of this Bulletin are mentioned in the copyright page. Further acknowledgements are due to Josée Bastien (Canada), Hans Rudolf Ganz (Switzerland) and Luc Taerwe (Belgium) for revision of the document. To all members of the working party on externally applied reinforcement our sincere thanks are expressed for the high quality and extensive work brought in on a voluntary basis.

Design of FRP Systems for Strengthening Concrete Girders in Shear

Design of FRP Systems for Strengthening Concrete Girders in Shear
Author: Abdeldjelil Belarbi
Publisher: Transportation Research Board
Total Pages: 130
Release: 2011
Genre: Architecture
ISBN: 0309155312

TRB's National Cooperative Highway Research Program (NCHRP) Report 678: Design of FRP Systems for Strengthening Concrete Girders in Shear offers suggested design guidelines for concrete girders strengthened in shear using externally bonded Fiber-Reinforced Polymer (FRP) systems. The guidelines address the strengthening schemes and application of the FRP systems and their contribution to shear capacity of reinforced and prestressed concrete girders. The guidelines are supplemented by design examples to illustrate their use for concrete beams strengthened with different FRP systems. Appendix A of NCHRP Report 678, which contains the research agency's final report, provides further elaboration on the work performed in this project. Appendix A: Research Description and Findings, is only available online.

Advanced Polymer Composites for Structural Applications in Construction

Advanced Polymer Composites for Structural Applications in Construction
Author: L C Hollaway
Publisher: Woodhead Publishing
Total Pages: 788
Release: 2004-04-22
Genre: Science
ISBN: 9781855737365

Following the success of ACIC 2002, this is the 2nd International Conference focusing on the application and further exploitation of advanced composites in construction held at the University of Surrey in April 2004. With over 100 delegates the conference brought together practicing engineers, asset managers, researchers and representatives of regulatory bodies to promote the active exchange of scientific and technical information on the rapidly changing scene of advanced composites in construction. The aim of the conference was to encourage the presentation of new concepts, techniques and case studies, which will lead to greater exploitation of advanced polymer composites and FRP materials for the civil engineering infrastructure, rehabilitation and renewal.

Advanced Composites

Advanced Composites
Author: Viktor Gribniak
Publisher: MDPI
Total Pages: 378
Release: 2021-06-02
Genre: Technology & Engineering
ISBN: 3036507248

Engineering practice has revealed that innovative technologies’ structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be understood in a simplified and heuristic manner as the optimization of performance and the proper combination of structural components, leading to the consumption of the least amount of natural resources. The solution to the eco-optimization problem, based on the adequate characterization of the materials, will enable implementing environmentally friendly engineering principles when the efficient use of advanced materials guarantees the required structural safety. Identifying fundamental relationships between the structure of advanced composites and their physical properties is the focus of this book. The collected articles explore the development of sustainable composites with valorized manufacturability corresponding to Industrial Revolution 4.0 ideology. The publications, amongst others, reveal that the application of nano-particles improves the mechanical performance of composite materials; heat-resistant aluminium composites ensure the safety of overhead power transmission lines; chemical additives can detect the impact of temperature on concrete structures. This book demonstrates that construction materials’ choice has considerable room for improvement from a scientific viewpoint, following heuristic approaches.

Advanced fibre-reinforced polymer (FRP) composites for structural applications

Advanced fibre-reinforced polymer (FRP) composites for structural applications
Author: L.C. Hollaway
Publisher: Elsevier Inc. Chapters
Total Pages: 51
Release: 2013-09-30
Genre: Technology & Engineering
ISBN: 012808846X

Chapters 16 and discuss the development of the advanced polymer composite material applications in bridge engineering. They demonstrate the innovative types of components and structures which have been developed from FRP composite materials and the most advantageous way to employ composites in bridge engineering. Given the importance of bridge infrastructure, the discussion of this topic has been split over two chapters. This chapter focuses on the type of FRP composite materials used in bridge engineering, their in-service properties and their applications in bridge enclosures and the rehabilitation of reinforced and prestressed concrete bridge beams and columns. covers rehabilitation of metallic bridge structures, all FRP composite bridges and bridges built with hybrid systems.

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites
Author: L C Hollaway
Publisher: Elsevier
Total Pages: 415
Release: 2008-07-18
Genre: Technology & Engineering
ISBN: 1845694899

The repair of deteriorated, damaged and substandard civil infrastructures has become one of the most important issues for the civil engineer worldwide. This important book discusses the use of externally-bonded fibre-reinforced polymer (FRP) composites to strengthen, rehabilitate and retrofit civil engineering structures, covering such aspects as material behaviour, structural design and quality assurance.The first three chapters of the book review structurally-deficient civil engineering infrastructure, including concrete, metallic, masonry and timber structures. FRP composites used in rehabilitation and surface preparation of the component materials are also reviewed. The next four chapters deal with the design of FRP systems for the flexural and shear strengthening of reinforced concrete (RC) beams and the strengthening of RC columns. The following two chapters examine the strengthening of metallic and masonry structures with FRP composites. The last four chapters of the book are devoted to practical considerations in the flexural strengthening of beams with unstressed and prestressed FRP plates, durability of externally bonded FRP composite systems, quality assurance and control, maintenance, repair, and case studies.With its distinguished editors and international team of contributors, Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites is a valuable reference guide for engineers, scientists and technical personnel in civil and structural engineering working on the rehabilitation and strengthening of the civil infrastructure. - Reviews the use of fibre-reinforced polymer (FRP) composites in structurally damaged and sub-standard civil engineering structures - Examines the role and benefits of fibre-reinforced polymer (FRP) composites in different types of structures such as masonry and metallic strengthening - Covers practical considerations including material behaviour, structural design and quality assurance