Adaptive Voltage Control in Power Systems

Adaptive Voltage Control in Power Systems
Author: Giuseppe Fusco
Publisher: Springer Science & Business Media
Total Pages: 170
Release: 2006-10-28
Genre: Technology & Engineering
ISBN: 1846285658

Adaptive Voltage Control in Power Systems, a self-contained blend of theory and novel application, offers in-depth treatment of such adaptive control schemes. Coverage moves from power-system-modelling problems through illustrations of the main adaptive control systems, including self-tuning, model-reference and nonlinearities compensation to a detailed description of design methods: Kalman filtering, parameter-identification algorithms and discrete-time controller design are all represented. Case studies address applications issues in the implementation of adaptive voltage control.

Adaptive Voltage Control in Power Systems

Adaptive Voltage Control in Power Systems
Author: Giuseppe Fusco
Publisher: Springer
Total Pages: 163
Release: 2009-10-12
Genre: Technology & Engineering
ISBN: 9781848005617

Adaptive Voltage Control in Power Systems, a self-contained blend of theory and novel application, offers in-depth treatment of such adaptive control schemes. Coverage moves from power-system-modelling problems through illustrations of the main adaptive control systems, including self-tuning, model-reference and nonlinearities compensation to a detailed description of design methods: Kalman filtering, parameter-identification algorithms and discrete-time controller design are all represented. Case studies address applications issues in the implementation of adaptive voltage control.

Voltage Control and Protection in Electrical Power Systems

Voltage Control and Protection in Electrical Power Systems
Author: Sandro Corsi
Publisher: Springer
Total Pages: 579
Release: 2015-06-19
Genre: Technology & Engineering
ISBN: 1447166361

Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At the end of this thorough and complex preliminary analysis the reader sees the true benefits and limitations of more traditional voltage control solutions, and gains an understanding and appreciation of the innovative grid voltage control and protection solutions here proposed; solutions aimed at improving the security, efficiency and quality of electrical power system operation around the globe. Voltage Control and Protection in Electrical Power Systems: from System Components to Wide Area Control will help to show engineers working in electrical power companies and system operators the significant advantages of new control solutions and will also interest academic control researchers studying ways of increasing power system stability and efficiency.

Power System Dynamic Modelling and Analysis in Evolving Networks

Power System Dynamic Modelling and Analysis in Evolving Networks
Author: Babak Badrzadeh
Publisher: Springer Nature
Total Pages: 893
Release: 2024-07-31
Genre: Mathematics
ISBN: 3031478215

This Green Book is an essential resource for power system engineers seeking comprehensive information on contemporary power system dynamic modelling and analysis. With today's rapid adoption of inverter-based resources and the resulting changes in power system dynamics, this book compares conventional power systems with evolving power systems characterized by high shares of grid-connected and distributed inverter-based resources. It covers dynamic phenomena, analysis methods, simulation tools and enablers required for secure and reliable system planning and operation. Starting with an overview of power system studies and associated analysis tools, the book provides modelling requirements for various power system components, including existing and emerging technologies. It includes practical examples from real-world power systems worldwide that act as step-by-step study guides for practising engineers and provides knowledge to apply in their day-to-day tasks. Additionally, the book emphasizes the importance of power system model acceptance testing and validation, providing practical examples of various testing methods. Written with practising power system engineers in mind, this book minimizes the use of advanced mathematics. However, relevant sources for those interested in learning more about mathematical concepts are provided. Overall, this book is an invaluable resource for power system engineers navigating contemporary power systems. Readers who would like to comment on any of the published books or identify errors to the editorial team please contact: [email protected].

Renewable Integrated Power System Stability and Control

Renewable Integrated Power System Stability and Control
Author: Hêmin Golpîra
Publisher: John Wiley & Sons
Total Pages: 322
Release: 2021-03-24
Genre: Technology & Engineering
ISBN: 1119689775

RENEWABLE INTEGRATED POWER SYSTEM STABILITY AND CONTROL Discover new challenges and hot topics in the field of penetrated power grids in this brand-new interdisciplinary resource Renewable Integrated Power System Stability and Control delivers a comprehensive exploration of penetrated grid dynamic analysis and new trends in power system modeling and dynamic equivalencing. The book summarizes long-term academic research outcomes and contributions and exploits the authors’ extensive practical experiences in power system dynamics and stability to offer readers an insightful analysis of modern power grid infrastructure. In addition to the basic principles of penetrated power system modeling, model reduction, and model derivation, the book discusses inertia challenge requirements and control levels, as well as recent advances in visualization of virtual synchronous generators and their associated effects on system performance. The physical constraints and engineering considerations of advanced control schemes are deliberated at length. Renewable Integrated Power System Stability and Control also considers robust and adaptive control strategies using real-time simulations and experimental studies. Readers will benefit from the inclusion of: A thorough introduction to power systems, including time horizon studies, structure, power generation options, energy storage systems, and microgrids An exploration of renewable integrated power grid modeling, including basic principles, host grid modeling, and grid-connected MG equivalent models A study of virtual inertia, including grid stability enhancement, simulations, and experimental results A discussion of renewable integrated power grid stability and control, including small signal stability assessment and the frequency point of view Perfect for engineers and operators in power grids, as well as academics studying the technology, Renewable Integrated Power System Stability and Control will also earn a place in the libraries of students in Electrical Engineering programs at the undergraduate and postgraduate levels who wish to improve their understanding of power system operation and control.

Converter-Based Dynamics and Control of Modern Power Systems

Converter-Based Dynamics and Control of Modern Power Systems
Author: Antonello Monti
Publisher: Academic Press
Total Pages: 376
Release: 2020-10-22
Genre: Technology & Engineering
ISBN: 0128184922

Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. - Includes theory on the emerging topic of electrical grids based on power electronics - Creates a good bridge between traditional theory and modern theory to support researchers and engineers - Links the two fields of power systems and power electronics in electrical engineering

Control of Fuel Cell Power Systems

Control of Fuel Cell Power Systems
Author: Jay T. Pukrushpan
Publisher: Springer Science & Business Media
Total Pages: 368
Release: 2004-09-16
Genre: Science
ISBN: 9781852338169

Presenting the latest research in the control of fuel cell technology, this book will contribute to the commercial viability of the technology. The authors’ background in automotive technology gives the work added authority as a vital element of future planning.

Geometrical Methods for Power Network Analysis

Geometrical Methods for Power Network Analysis
Author: Stefano Bellucci
Publisher: Springer Science & Business Media
Total Pages: 107
Release: 2012-12-15
Genre: Technology & Engineering
ISBN: 3642333443

This book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory.