Adaptive Robust Control With Statistical Learning
Download Adaptive Robust Control With Statistical Learning full books in PDF, epub, and Kindle. Read online free Adaptive Robust Control With Statistical Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Anh Tuan Le |
Publisher | : BoD – Books on Demand |
Total Pages | : 364 |
Release | : 2018-03-07 |
Genre | : Technology & Engineering |
ISBN | : 9535137964 |
This book focuses on the applications of robust and adaptive control approaches to practical systems. The proposed control systems hold two important features: (1) The system is robust with the variation in plant parameters and disturbances (2) The system adapts to parametric uncertainties even in the unknown plant structure by self-training and self-estimating the unknown factors. The various kinds of robust adaptive controls represented in this book are composed of sliding mode control, model-reference adaptive control, gain-scheduling, H-infinity, model-predictive control, fuzzy logic, neural networks, machine learning, and so on. The control objects are very abundant, from cranes, aircrafts, and wind turbines to automobile, medical and sport machines, combustion engines, and electrical machines.
Author | : Aude Billard |
Publisher | : MIT Press |
Total Pages | : 425 |
Release | : 2022-02-08 |
Genre | : Technology & Engineering |
ISBN | : 0262367017 |
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.
Author | : Shankar Sastry |
Publisher | : Courier Corporation |
Total Pages | : 402 |
Release | : 2011-01-01 |
Genre | : Technology & Engineering |
ISBN | : 0486482022 |
This volume surveys the major results and techniques of analysis in the field of adaptive control. Focusing on linear, continuous time, single-input, single-output systems, the authors offer a clear, conceptual presentation of adaptive methods, enabling a critical evaluation of these techniques and suggesting avenues of further development. 1989 edition.
Author | : Mouhacine Benosman |
Publisher | : Butterworth-Heinemann |
Total Pages | : 284 |
Release | : 2016-08-02 |
Genre | : Technology & Engineering |
ISBN | : 0128031514 |
Adaptive control has been one of the main problems studied in control theory. The subject is well understood, yet it has a very active research frontier. This book focuses on a specific subclass of adaptive control, namely, learning-based adaptive control. As systems evolve during time or are exposed to unstructured environments, it is expected that some of their characteristics may change. This book offers a new perspective about how to deal with these variations. By merging together Model-Free and Model-Based learning algorithms, the author demonstrates, using a number of mechatronic examples, how the learning process can be shortened and optimal control performance can be reached and maintained. - Includes a good number of Mechatronics Examples of the techniques. - Compares and blends Model-free and Model-based learning algorithms. - Covers fundamental concepts, state-of-the-art research, necessary tools for modeling, and control.
Author | : Draguna L. Vrabie |
Publisher | : IET |
Total Pages | : 305 |
Release | : 2013 |
Genre | : Computers |
ISBN | : 1849194890 |
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Author | : Tobias Bruckmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 443 |
Release | : 2012-09-09 |
Genre | : Technology & Engineering |
ISBN | : 3642319874 |
Gathering presentations to the First International Conference on Cable-Driven Parallel Robots, this book covers classification and definition, kinematics, workspace analysis, cable modeling, hardware/prototype development, control and calibration and more.
Author | : Yu Jiang |
Publisher | : John Wiley & Sons |
Total Pages | : 220 |
Release | : 2017-04-13 |
Genre | : Science |
ISBN | : 1119132657 |
A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Author | : Vinit Kumar Gunjan |
Publisher | : Springer Nature |
Total Pages | : 821 |
Release | : 2022-01-10 |
Genre | : Technology & Engineering |
ISBN | : 9811664072 |
This book contains original, peer-reviewed research articles from the Second International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, held in March 28-29th 2021 at CMR Institute of Technology, Hyderabad, Telangana India. It covers the latest research trends and developments in areas of machine learning, artificial intelligence, neural networks, cyber-physical systems, cybernetics, with emphasis on applications in smart cities, Internet of Things, practical data science and cognition. The book focuses on the comprehensive tenets of artificial intelligence, machine learning and deep learning to emphasize its use in modelling, identification, optimization, prediction, forecasting and control of future intelligent systems. Submissions were solicited of unpublished material, and present in-depth fundamental research contributions from a methodological/application perspective in understanding artificial intelligence and machine learning approaches and their capabilities in solving a diverse range of problems in industries and its real-world applications.
Author | : Sofiane Bououden |
Publisher | : Springer Nature |
Total Pages | : 1257 |
Release | : 2020-09-29 |
Genre | : Technology & Engineering |
ISBN | : 9811564035 |
This book gathers papers presented during the 4th International Conference on Electrical Engineering and Control Applications. It covers new control system models, troubleshooting tips and complex system requirements, such as increased speed, precision and remote capabilities. Additionally, the papers discuss not only the engineering aspects of signal processing and various practical issues in the broad field of information transmission, but also novel technologies for communication networks and modern antenna design. This book is intended for researchers, engineers and advanced postgraduate students in the fields of control and electrical engineering, computer science and signal processing, as well as mechanical and chemical engineering.
Author | : Igor V. Tetko |
Publisher | : Springer Nature |
Total Pages | : 848 |
Release | : 2019-09-09 |
Genre | : Computers |
ISBN | : 3030304876 |
The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions.