Acoustic Control of Turbulent Jets

Acoustic Control of Turbulent Jets
Author: A.S. Ginevsky
Publisher: Springer Science & Business Media
Total Pages: 243
Release: 2012-11-02
Genre: Technology & Engineering
ISBN: 3540399143

Results of experimental research on aerodynamic and acoustic control of subsonic turbulent jets by acoustic excitation are presented. It was demonstrated that these control methods, originated by authors, not only can intensify mixing (by acoustic irradiation at low frequency), but also notably ease it (at high-frequency irradiation). This research monograph presents the updated results of the authors supplemented by other investigations conducted in USA, Germany and Great Britain. The methods for the numerical simulation of subsonic turbulent jets under acoustic excitation are described in detail, and examples are reviewed of practical applications, including reduction of turbojet engine noise and acoustic control of self-sustained oscillations in wind tunnels.

Visualization of Conventional and Combusting Subsonic Jet Instabilities

Visualization of Conventional and Combusting Subsonic Jet Instabilities
Author: Victor V. Kozlov
Publisher: Springer
Total Pages: 135
Release: 2015-11-30
Genre: Technology & Engineering
ISBN: 3319269585

Based on new information obtained on free microjets, this book explains the latest phenomena in flame evolution in the presence of a transverse acoustic field with round and plane propane microjet combustion. It gives an overview of recent experimental results on instability and dynamics of jets at low Reynolds numbers and provides the reader, step by step, with the milestones and recent advances in jet flow stability and combustion. Readers will also discover a clarification of the differences between top-hat and parabolic round and plane jet instability. Chapters demonstrate features of the interaction between jet and crossflow, and how experimental data testify to similarities of the perturbed flow patterns of laminar and turbulent round jets. A similar response of the jets to external acoustic oscillations is shown, as well as the peculiarities of the effect of a transverse acoustic field on downstream evolution of round and plane macro- and microjets. Basic features of round and plane, macro and micro jets' evolution affected by initial conditions at the nozzle outlet and by environmental perturbations are highlighted. Students of fluid mechanics will gain a solid foundation in hydrodynamic stability and combustion of subsonic jet flow and researchers will value the presentation of special aspects of instability and transition. The work treats both theoretical and practical facets, and it includes supplementary material such as PowerPoint multimedia notes based on results of laboratory scientific experiments.

Numerical Simulation of Turbulent Flows and Noise Generation

Numerical Simulation of Turbulent Flows and Noise Generation
Author: Christophe Brun
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2009-03-07
Genre: Technology & Engineering
ISBN: 3540899561

Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.

Physics of Turbulent Jet Ignition

Physics of Turbulent Jet Ignition
Author: Sayan Biswas
Publisher: Springer
Total Pages: 230
Release: 2018-05-03
Genre: Technology & Engineering
ISBN: 3319762435

This book focuses on developing strategies for ultra-lean combustion of natural gas and hydrogen, and contributes to the research on extending the lean flammability limit of hydrogen and air using a hot supersonic jet. The author addresses experimental methods, data analysis techniques, and results throughout each chapter and: Explains the fundamental mechanisms behind turbulent hot jet ignition using non-dimensional analysis Explores ignition characteristics by impinging hot jet and multiple jets in relation to better controllability and lean combustion Explores how different instability modes interact with the acoustic modes of the combustion chamber. This book provides a potential answer to some of the issues that arise from lean engine operation, such as poor ignition, engine misfire, cycle-to-cycle variability, combustion instability, reduction in efficiency, and an increase in unburned hydrocarbon emissions. This thesis was submitted to and approved by Purdue University.

The Theory of Turbulent Jets

The Theory of Turbulent Jets
Author: Genrikh Naumovich Abramovich
Publisher: Mit Press
Total Pages: 671
Release: 1963
Genre: Technology & Engineering
ISBN: 9780262010085

The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.

Turbulent Jets and Plumes

Turbulent Jets and Plumes
Author: Joseph Hun-wei Lee
Publisher: Springer Science & Business Media
Total Pages: 391
Release: 2012-12-06
Genre: Science
ISBN: 1461504074

Jets and plumes are shear flows produced by momentum and buoyancy forces. Examples include smokestack emissions, fires and volcano eruptions, deep sea vents, thermals, sewage discharges, thermal effluents from power stations, and ocean dumping of sludge. Knowledge of turbulent mixing by jets and plumes is important for environmental control, impact and risk assessment. Turbulent Jets and Plumes introduces the fundamental concepts and develops a Lagrangian approach to model these shear flows. This theme persists throughout the text, starting from simple cases and building towards the practically important case of a turbulent buoyant jet in a density-stratified crossflow. Basic ideas are illustrated by ample use of flow visualization using the laser-induced fluorescence technique. The text includes many illustrative worked examples, comparisons of model predictions with laboratory and field data, and classroom tested problems. An interactive PC-based virtual-reality modelling software (VISJET) is also provided. Engineering and science students, researchers and practitioners may use the book both as an introduction to the subject and as a reference in hydraulics and environmental fluid mechanics.

Handbook of Noise and Vibration Control

Handbook of Noise and Vibration Control
Author: Malcolm J. Crocker
Publisher: John Wiley & Sons
Total Pages: 1594
Release: 2007-10-05
Genre: Technology & Engineering
ISBN: 0471395994

Two of the most acclaimed reference works in the area of acoustics in recent years have been our Encyclopedia of Acoustics, 4 Volume set and the Handbook of Acoustics spin-off. These works, edited by Malcolm Crocker, positioned Wiley as a major player in the acoustics reference market. With our recently published revision of Beranek & Ver's Noise and Vibration Control Engineering, Wiley is a highly respected name in the acoustics business. Crocker's new handbook covers an area of great importance to engineers and designers. Noise and vibration control is one largest areas of application of the acoustics topics covered in the successful encyclopedia and handbook. It is also an area that has been under-published in recent years. Crocker has positioned this reference to cover the gamut of topics while focusing more on the applications to industrial needs. In this way the book will become the best single source of need-to-know information for the professional markets.

Perspectives in Fluid Dynamics

Perspectives in Fluid Dynamics
Author: G. K. Batchelor
Publisher: Cambridge University Press
Total Pages: 650
Release: 2003
Genre: Mathematics
ISBN: 9780521531696

Paperback edition of text on fluid dynamics for graduate students and specialists alike.