An Accompaniment to Higher Mathematics

An Accompaniment to Higher Mathematics
Author: George R. Exner
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 1999-06-22
Genre: Mathematics
ISBN: 9780387946177

Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.

Undergraduate Algebra

Undergraduate Algebra
Author: Serge Lang
Publisher: Springer Science & Business Media
Total Pages: 380
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475768982

The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group

An Introduction to Difference Equations

An Introduction to Difference Equations
Author: Saber N. Elaydi
Publisher: Springer Science & Business Media
Total Pages: 398
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475791682

This book grew out of lecture notes I used in a course on difference equations that I taught at Trinity University for the past five years. The classes were largely pop ulated by juniors and seniors majoring in Mathematics, Engineering, Chemistry, Computer Science, and Physics. This book is intended to be used as a textbook for a course on difference equations at the level of both advanced undergraduate and beginning graduate. It may also be used as a supplement for engineering courses on discrete systems and control theory. The main prerequisites for most of the material in this book are calculus and linear algebra. However, some topics in later chapters may require some rudiments of advanced calculus. Since many of the chapters in the book are independent, the instructor has great flexibility in choosing topics for the first one-semester course. A diagram showing the interdependence of the chapters in the book appears following the preface. This book presents the current state of affairs in many areas such as stability, Z-transform, asymptoticity, oscillations and control theory. However, this book is by no means encyclopedic and does not contain many important topics, such as Numerical Analysis, Combinatorics, Special functions and orthogonal polyno mials, boundary value problems, partial difference equations, chaos theory, and fractals. The nonselection of these topics is dictated not only by the limitations imposed by the elementary nature of this book, but also by the research interest (or lack thereof) of the author.

Topological Spaces

Topological Spaces
Author: Gerard Buskes
Publisher: Springer Science & Business Media
Total Pages: 321
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461206650

gentle introduction to the subject, leading the reader to understand the notion of what is important in topology with regard to geometry. Divided into three sections - The line and the plane, Metric spaces and Topological spaces -, the book eases the move into higher levels of abstraction. Students are thereby informally assisted in learning new ideas while remaining on familiar territory. The authors do not assume previous knowledge of axiomatic approach or set theory. Similarly, they have restricted the mathematical vocabulary in the book so as to avoid overwhelming the reader, and the concept of convergence is employed to allow students to focus on a central theme while moving to a natural understanding of the notion of topology. The pace of the book is relaxed with gradual acceleration: the first nine sections form a balanced course in metric spaces for undergraduates while also containing ample material for a two-semester graduate course. Finally, the book illustrates the many connections between topology and other subjects, such as analysis and set theory, via the inclusion of "Extras" at the end of each chapter presenting a brief foray outside topology.

A Course in Calculus and Real Analysis

A Course in Calculus and Real Analysis
Author: Sudhir R. Ghorpade
Publisher: Springer Science & Business Media
Total Pages: 442
Release: 2006-06-05
Genre: Mathematics
ISBN: 0387305300

This book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus. Throughout, the authors highlight the fact that calculus provides a firm foundation to concepts and results that are generally encountered in high school and accepted on faith; for example, the classical result that the ratio of circumference to diameter is the same for all circles. A number of topics are treated here in considerable detail that may be inadequately covered in calculus courses and glossed over in real analysis courses.

Topology of Surfaces

Topology of Surfaces
Author: L.Christine Kinsey
Publisher: Springer Science & Business Media
Total Pages: 290
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461208998

" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.

An Introduction to Probabilistic Modeling

An Introduction to Probabilistic Modeling
Author: Pierre Bremaud
Publisher: Springer Science & Business Media
Total Pages: 222
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461210461

Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.

Conics and Cubics

Conics and Cubics
Author: Robert Bix
Publisher: Springer Science & Business Media
Total Pages: 300
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475729758

Algebraic curves are the graphs of polynomial equations in two vari 3 ables, such as y3 + 5xy2 = x + 2xy. By focusing on curves of degree at most 3-lines, conics, and cubics-this book aims to fill the gap between the familiar subject of analytic geometry and the general study of alge braic curves. This text is designed for a one-semester class that serves both as a a geometry course for mathematics majors in general and as a sequel to college geometry for teachers of secondary school mathe matics. The only prerequisite is first-year calculus. On the one hand, this book can serve as a text for an undergraduate geometry course for all mathematics majors. Algebraic geometry unites algebra, geometry, topology, and analysis, and it is one of the most exciting areas of modem mathematics. Unfortunately, the subject is not easily accessible, and most introductory courses require a prohibitive amount of mathematical machinery. We avoid this problem by focusing on curves of degree at most 3. This keeps the results tangible and the proofs natural. It lets us emphasize the power of two fundamental ideas, homogeneous coordinates and intersection multiplicities.

Limits

Limits
Author: Alan F. Beardon
Publisher: Springer Science & Business Media
Total Pages: 196
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461206979

Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.

The Heritage of Thales

The Heritage of Thales
Author: W.S. Anglin
Publisher: Springer Science & Business Media
Total Pages: 304
Release: 2012-12-06
Genre: Science
ISBN: 1461208033

The authors' novel approach to some interesting mathematical concepts - not normally taught in other courses - places them in a historical and philosophical setting. Although primarily intended for mathematics undergraduates, the book will also appeal to students in the sciences, humanities and education with a strong interest in this subject. The first part proceeds from about 1800 BC to 1800 AD, discussing, for example, the Renaissance method for solving cubic and quartic equations and providing rigorous elementary proof that certain geometrical problems posed by the ancient Greeks cannot be solved by ruler and compass alone. The second part presents some fundamental topics of interest from the past two centuries, including proof of G del's incompleteness theorem, together with a discussion of its implications.