Electronic Structure and Properties of Transition Metal Compounds

Electronic Structure and Properties of Transition Metal Compounds
Author: Isaac B. Bersuker
Publisher: John Wiley & Sons
Total Pages: 658
Release: 2010-12-01
Genre: Science
ISBN: 0470920858

With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.

Molecular Electronic Structures of Transition Metal Complexes I

Molecular Electronic Structures of Transition Metal Complexes I
Author: David Michael P. Mingos
Publisher: Springer Science & Business Media
Total Pages: 227
Release: 2012-01-11
Genre: Science
ISBN: 364227370X

J.P. Dahl: Carl Johan Ballhausen (1926–2010).- J.R. Winkler and H.B. Gray: Electronic Structures of Oxo-Metal Ions.- C.D. Flint: Early Days in Kemisk Laboratorium IV and Later Studies.- J.H. Palmer: Transition Metal Corrole Coordination Chemistry. A Review Focusing on Electronic Structural Studies.- W.C. Trogler: Chemical Sensing with Semiconducting Metal Phthalocyanines.- K.M. Lancaster: Biological Outer-Sphere Coordination.- R.K. Hocking and E.I. Solomon: Ligand Field and Molecular Orbital Theories of Transition Metal X-ray Absorption Edge Transitions.- K.B. Møller and N.E. Henriksen: Time-resolved X-ray diffraction: The dynamics of the chemical bond.

Molecular Orbitals of Transition Metal Complexes

Molecular Orbitals of Transition Metal Complexes
Author: Yves Jean
Publisher: Oxford University Press
Total Pages: 288
Release: 2005-03-24
Genre: Science
ISBN: 0198530935

This book starts with the most elementary ideas of molecular orbital theory and leads the reader progressively to an understanding of the electronic structure, geometry and, in some cases, reactivity of transition metal complexes. The qualitative orbital approach, based on simple notions such as symmetry, overlap and electronegativity, is the focus of the presentation and a substantial part of the book is associated with the mechanics of the assembly of molecular orbital diagrams. The first chapter recalls the basis for electron counting in transition metal complexes. The main ligand fields (octahedral, square planar, tetrahedral, etc.) are studied in the second chapter and the structure of the "d block" is used to trace the relationships between the electronic structure and the geometry of the complexes. The third chapter studies the change in analysis when the ligands have pi-type interactions with the metal. All these ideas are then used in the fourth chapter to study a series of selected applications of varying complexity (e.g. structure and reactivity). The fifth chapter deals with the "isolobal analogy" which points out the resemblance between the molecular orbitals of inorganic and organic species and provides a bridge between these two subfields of chemistry. The last chapter is devoted to a presentation of basic Group Theory with applications to some of the complexes studied in the earlier chapters.

Electronic Structure and Magnetism of Complex Materials

Electronic Structure and Magnetism of Complex Materials
Author: David J. Singh
Publisher: Springer Science & Business Media
Total Pages: 352
Release: 2003-03-06
Genre: Science
ISBN: 9783540433828

Recent developments in electronic structure theory have led to a new understanding of magnetic materials at the microscopic level. This enables a truly first-principles approach to investigations of technologically important magnetic materials. Among the advances treated here have been practical schemes for handling non-collinear magnetic systems, including relativity, and an understanding of the origins and role of orbital magnetism within band structure formalisms. This book provides deep theoretical insight into magnetism, mahneatic materials, and magnetic systems. It covers these recent developments with review articles by some of the main originators of these developments.

Soft Crystals

Soft Crystals
Author: Masako Kato
Publisher: Springer Nature
Total Pages: 265
Release: 2023-03-27
Genre: Science
ISBN: 9819902606

This open access book introduces the science of the new materials, soft crystals, by showing various interesting examples. Different from conventional hard and stable crystals, the soft crystals respond to gentle stimuli such as vapor exposure and rubbing but maintain their structural order. In this book, their exhibition of remarkable visual changes in their shape, color, and luminescence is described. Through the chapters, historical background, recent remarkable developments, and future prospects are described concisely. This book helps readers to understand a new concept of materials that have the characteristics of stimulus-sensitive soft matter and finely controlled crystals and to design novel materials with the characteristics. The English translation of this book from its Japanese language original manuscript was done with the help of artificial intelligence (machine translation by the service DeepL.com). The text has subsequently been revised further by a professional copy editor in order to refine the work stylistically.

Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry

Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry
Author: A. Veillard
Publisher: Springer Science & Business Media
Total Pages: 518
Release: 2012-12-06
Genre: Science
ISBN: 9400946562

Over the last twenty years, developments of the ab initio metho dologies and of the computing capacities have progressively turned quantum chemistry into a predictive tool for molecular systems involving only light elements. The situation appears less advanced for systems containing transition metal elements where specific difficulties arise, like those 1inked to the quasi-degeneracy of the lowest atomic states. Correlation effects, which are important only for quantitative accuracy in the treatment of molecules made of light elements, need sometimes to be considered even for a qualitative des cription of transition metals systems (like the multiple metal-metal bond). The treatment of atoms of a high atomic number has necessited the development of model potential methods. These difficulties ex acerbate for systems containing several trans ition atoms a correct description of the dichromium molecule Crz still represents a challenge to quantum chemists. Yet many advances have been made recently in the theoretical treatment of these systems, despite the fact that our understanding still remains disparate with a variety of models and methodologies used more or less successfully (one-electron models, explicitly correlated ab initio methods, density functional formalisms). For these reasons, a NATO Advanced Research Workshop was organized to review in detail the state-of-the-art techniques and at the same time the most common applications. These encompass many fields including the spectroscopy of diatomics and small aggregates, structure and reactivity problems in organometallic chemistry, the cluster surface analogy with its implications for heterogeneous catalysis and the description of extended structures.

First Principles Approaches to Spectroscopic Properties of Complex Materials

First Principles Approaches to Spectroscopic Properties of Complex Materials
Author: Cristiana Di Valentin
Publisher: Springer
Total Pages: 397
Release: 2014-09-26
Genre: Technology & Engineering
ISBN: 3642550681

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.