Flow in Porous Media

Flow in Porous Media
Author: J. Douglas
Publisher: Birkhäuser
Total Pages: 180
Release: 2012-12-06
Genre: Science
ISBN: 3034885644

Jim Douglas, Jr.' These proceedings reflect some of the thoughts expressed at the Oberwolfach Con ference on Porous Media held June 21-27, 1992, organized by Jim Douglas, Jr., Ulrich Hornung, and Cornelius J, van Duijn. Forty-five scientists attended the conference, and about thirty papers were presented. Fourteen manuscripts were submitted for the proceedings and are incorporated in this volume; they cover a number of aspects of flow and transport in porous media. Indeed, there are 223 individual references in the fourteen papers, but fewer than fifteen are cited in more than one paper. The papers appear in alphabetical order (on the basis of the first author). A brief introduction to each paper is given below. Allen and Curran consider a variety of questions related to the simulation of ground water contamination. Accurate water velocities are essential for acceptable results, and the authors apply mixed finite elements to the pressure equation to obtain these ve locities. Since fine grids are required to resolve heterogenei ties, standard iterative procedures are too slow for practical simulation; the authors introduce a parallelizable, multigrid-based it.erative scheme for the lowest order Raviart-Thomas mixed method. Contaminant transport is approximated through a finite element collocation procedure, and an alternating-direction, modified method of characteristics technique is employed to time-step the simulation. Computational experiments carried out on an nCube 2 computer.

Computational Modelling of Multi-scale Solute Dispersion in Porous Media

Computational Modelling of Multi-scale Solute Dispersion in Porous Media
Author: Don Kulasiri
Publisher: BoD – Books on Demand
Total Pages: 246
Release: 2011-11-04
Genre: Computers
ISBN: 9533077263

This research monograph presents a mathematical approach based on stochastic calculus which tackles the "cutting edge" in porous media science and engineering - prediction of dispersivity from covariance of hydraulic conductivity (velocity). The problem is of extreme importance for tracer analysis, for enhanced recovery by injection of miscible gases, etc. This book explains a generalised mathematical model and effective numerical methods that may highly impact the stochastic porous media hydrodynamics. The book starts with a general overview of the problem of scale dependence of the dispersion coefficient in porous media. Then a review of pertinent topics of stochastic calculus that would be useful in the modeling in the subsequent chapters is succinctly presented. The development of a generalised stochastic solute transport model for any given velocity covariance without resorting to Fickian assumptions from laboratory scale to field scale is discussed in detail. The mathematical approaches presented here may be useful for many other problems related to chemical dispersion in porous media.