A Smooth and Discontinuous Oscillator

A Smooth and Discontinuous Oscillator
Author: Qingjie Cao
Publisher: Springer
Total Pages: 273
Release: 2016-09-27
Genre: Technology & Engineering
ISBN: 3662530945

This is the first book to introduce the irrational elliptic function series, providing a theoretical treatment for the smooth and discontinuous system and opening a new branch of applied mathematics. The discovery of the smooth and discontinuous (SD) oscillator and the SD attractors discussed in this book represents a further milestone in nonlinear dynamics, following on the discovery of the Ueda attractor in 1961 and Lorenz attractor in 1963. This particular system bears significant similarities to the Duffing oscillator, exhibiting the standard dynamics governed by the hyperbolic structure associated with the stationary state of the double well. However, there is a substantial departure in nonlinear dynamics from standard dynamics at the discontinuous stage. The constructed irrational elliptic function series, which offers a way to directly approach the nature dynamics analytically for both smooth and discontinuous behaviours including the unperturbed periodic motions and the perturbed chaotic attractors without any truncation, is of particular interest. Readers will also gain a deeper understanding of the actual nonlinear phenomena by means of a simple mechanical model: the theory, methodology, and the applications in various interlinked disciplines of sciences and engineering. This book offers a valuable resource for researchers, professionals and postgraduate students in mechanical engineering, non-linear dynamics, and related areas, such as nonlinear modelling in various fields of mathematics, physics and the engineering sciences.

Oscillators and Oscillatory Signals from Smooth to Discontinuous

Oscillators and Oscillatory Signals from Smooth to Discontinuous
Author: Valery N. Pilipchuk
Publisher: Springer Nature
Total Pages: 461
Release: 2023-09-23
Genre: Science
ISBN: 3031377885

This updated and enriched new edition maintains its complementarity principle in which the subgroup of rotations, harmonic oscillators, and the conventional complex analysis generate linear and weakly nonlinear approaches, whereas translations and reflections, impact oscillators, and hyperbolic Clifford’s algebras, give rise to the essentially nonlinear “quasi-impact” methodology based on the idea of non-smooth temporal substitutions. In the years since “Nonlinear Dynamics: Between Linear and Impact Limits,” the previous edition of this book, was published, due to a widening area of applications, a deeper insight into the matter has emerged leading to the rudimentary algebraic view on the very existence of the complementary smooth and non-smooth base systems as those associated with two different signs of the algebraic equation j2 =± 1. This edition further includes an overview of applications found in the literature after the publication of first edition, and new physical examples illustrating both theoretical statements and constructive analytical tools.

Piecewise-smooth Dynamical Systems

Piecewise-smooth Dynamical Systems
Author: Mario Bernardo
Publisher: Springer Science & Business Media
Total Pages: 497
Release: 2008-01-01
Genre: Mathematics
ISBN: 1846287081

This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.

Research and Applications in Structural Engineering, Mechanics and Computation

Research and Applications in Structural Engineering, Mechanics and Computation
Author: Alphose Zingoni
Publisher: CRC Press
Total Pages: 956
Release: 2013-08-15
Genre: Science
ISBN: 1315850788

Research and Applications in Structural Engineering, Mechanics and Computation contains the Proceedings of the Fifth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2013, Cape Town, South Africa, 2-4 September 2013). Over 420 papers are featured. Many topics are covered, but the contributions may be seen to fall

Qualitative Analysis of Nonsmooth Dynamics

Qualitative Analysis of Nonsmooth Dynamics
Author: Alain Léger
Publisher: Elsevier
Total Pages: 224
Release: 2016-04-26
Genre: Technology & Engineering
ISBN: 0081012012

Qualitative Analysis of Nonsmooth Dynamics: A Simple Discrete System with Unilateral Contact and Coulomb Friction explores the effects of small and large deformations to understand how shocks, sliding, and stick phases affect the trajectories of mechanical systems. By analyzing these non-regularities successively this work explores the set of equilibria and properties of periodic solutions of elementary mechanical systems, where no classical results issued from the theory of ordinary differential equations are readily available, such as stability, continuation or approximation of solutions. The authors focus on unilateral contact in presence of Coulomb friction and show, in particular, how any regularization would greatly simplify the mathematics but lead to unacceptable physical responses. - Explores the effects of small and large deformations to understand how shocks, sliding, and stick phases affect the trajectories of mechanical systems - Includes theoretical results concerning the full investigation of the behavior under constant or oscillating loadings, even in the case of the simplest mechanical systems - Provides a focus on unilateral contact in presence of Coulomb friction - Helps you gain an accurate understanding of how the transition occurs to ensure the safe use of any machine involving rotating or sliding mechanisms

Global Nonlinear Dynamics for Engineering Design and System Safety

Global Nonlinear Dynamics for Engineering Design and System Safety
Author: Stefano Lenci
Publisher: Springer
Total Pages: 327
Release: 2018-09-24
Genre: Technology & Engineering
ISBN: 3319997106

This is the first book which exploits concepts and tools of global nonlinear dynamics for bridging the gap between theoretical and practical stability of systems/structures, and for possibly enhancing the engineering design in macro-, micro- and nano-mechanics. Addressed topics include complementing theoretical and practical stability to achieve load carrying capacity; dynamical integrity for analyzing global dynamics, for interpreting/predicting experimental behavior, for getting hints towards engineering design; techniques for control of chaos; response of uncontrolled and controlled system/models in applied mechanics and structural dynamics by also considerung the effect of system imperfections; from relatively simple systems to multidimensional models representative of real world applications; potential and expected impact of global dynamics for engineering design.

Applied Nonlinear Dynamics And Chaos Of Mechanical Systems With Discontinuities

Applied Nonlinear Dynamics And Chaos Of Mechanical Systems With Discontinuities
Author: Bram De Kraker
Publisher: World Scientific
Total Pages: 462
Release: 2000-04-28
Genre: Technology & Engineering
ISBN: 9814497908

Rapid developments in nonlinear dynamics and chaos theory have led to publication of many valuable monographs and books. However, most of these texts are devoted to the classical nonlinear dynamics systems, for example the Duffing or van der Pol oscillators, and either neglect or refer only briefly to systems with motion-dependent discontinuities. In engineering practice a good part of problems is discontinuous in nature, due to either deliberate reasons such as the introduction of working clearance, and/or the finite accuracy of the manufacturing processes.The main objective of this volume is to provide a general methodology for describing, solving and analysing discontinuous systems. It is compiled from the dedicated contributions written by experts in the field of applied nonlinear dynamics and chaos.The main focus is on mechanical engineering problems where clearances, piecewise stiffness, intermittent contact, variable friction or other forms of discontinuity occur. Practical applications include vibration absorbers, percussive drilling of hard materials and dynamics of metal cutting.

Analytical Methods for Nonlinear Oscillators and Solitary Waves

Analytical Methods for Nonlinear Oscillators and Solitary Waves
Author: Chu-Hui He
Publisher: Frontiers Media SA
Total Pages: 132
Release: 2023-11-24
Genre: Science
ISBN: 2832539637

The most well-known analytical method is the perturbation method, which has led to the great discovery of Neptune in 1846, and since then mathematical prediction and empirical observation became two sides of a coin in physics. However, the perturbation method is based on the small parameter assumption, and the obtained solutions are valid only for weakly nonlinear equations, which have greatly limited their applications to modern physical problems. To overcome the shortcomings, many mathematicians and physicists have been extensively developing various technologies for several centuries, however, there is no universal method for all nonlinear problems, and mathematical prediction with remarkably high accuracy is still much needed for modern physics, for example, the solitary waves traveling along an unsmooth boundary, the low-frequency property of a harvesting energy device, the pull-in voltage in a micro-electromechanical system. Now various effective analytical methods have appeared in the open literature, e.g., the homotopy perturbation method and the variational iteration method. An analytical solution provides a fast insight into its physical properties of a practical problem, e.g., frequency-amplitude relation of a nonlinear oscillator, solitary wave in an optical fiber, pull-in instability of a microelectromechanical system, making mathematical prediction even more attractive in modern physics. Nonlinear physics has been developing into a new stage, where the fractal-fractional differential equations have to be adopted to describe more accurately discontinuous problems, and it becomes ever more difficult to find an analytical solution for such nonlinear problems, and the analytical methods for fractal-fractional differential equations have laid the foundations for nonlinear physics.

Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling

Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling
Author: José Eduardo Souza De Cursi
Publisher: Springer Nature
Total Pages: 478
Release: 2020-08-19
Genre: Technology & Engineering
ISBN: 3030536696

This proceedings book discusses state-of-the-art research on uncertainty quantification in mechanical engineering, including statistical data concerning the entries and parameters of a system to produce statistical data on the outputs of the system. It is based on papers presented at Uncertainties 2020, a workshop organized on behalf of the Scientific Committee on Uncertainty in Mechanics (Mécanique et Incertain) of the AFM (French Society of Mechanical Sciences), the Scientific Committee on Stochastic Modeling and Uncertainty Quantification of the ABCM (Brazilian Society of Mechanical Sciences) and the SBMAC (Brazilian Society of Applied Mathematics).