A Primer on Mathematical Modelling

A Primer on Mathematical Modelling
Author: Alfio Quarteroni
Publisher: Springer Nature
Total Pages: 238
Release: 2020-10-09
Genre: Mathematics
ISBN: 3030445410

In this book we describe the magic world of mathematical models: starting from real-life problems, we formulate them in terms of equations, transform equations into algorithms and algorithms into programs to be executed on computers. A broad variety of examples and exercises illustrate that properly designed models can, e.g.: predict the way the number of dolphins in the Aeolian Sea will change as food availability and fishing activity vary; describe the blood flow in a capillary network; calculate the PageRank of websites. This book also includes a chapter with an elementary introduction to Octave, an open-source programming language widely used in the scientific community. Octave functions and scripts for dealing with the problems presented in the text can be downloaded from https://paola-gervasio.unibs.it/quarteroni-gervasio This book is addressed to any student interested in learning how to construct and apply mathematical models.

A Primer in Mathematical Models in Biology

A Primer in Mathematical Models in Biology
Author: Lee A. Segel
Publisher: SIAM
Total Pages: 435
Release: 2013-05-09
Genre: Science
ISBN: 1611972493

A textbook on mathematical modelling techniques with powerful applications to biology, combining theoretical exposition with exercises and examples.

Mathematical Modeling of Earth's Dynamical Systems

Mathematical Modeling of Earth's Dynamical Systems
Author: Rudy Slingerland
Publisher: Princeton University Press
Total Pages: 246
Release: 2011-03-28
Genre: Science
ISBN: 1400839114

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html

Mathematical Models in Biology

Mathematical Models in Biology
Author: Leah Edelstein-Keshet
Publisher: SIAM
Total Pages: 629
Release: 1988-01-01
Genre: Mathematics
ISBN: 9780898719147

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution
Author: Sarah P. Otto
Publisher: Princeton University Press
Total Pages: 745
Release: 2011-09-19
Genre: Science
ISBN: 1400840910

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available

Mathematical Modeling of Unsteady Inviscid Flows

Mathematical Modeling of Unsteady Inviscid Flows
Author: Jeff D. Eldredge
Publisher: Springer
Total Pages: 473
Release: 2019-07-22
Genre: Mathematics
ISBN: 303018319X

This book builds inviscid flow analysis from an undergraduate-level treatment of potential flow to the level required for research. The tools covered in this book allow the reader to develop physics-based mathematical models for a variety of flows, including attached and separated flows past wings, fins, and blades of various shapes undergoing arbitrary motions. The book covers all of the ingredients of these models: the solution of potential flows about arbitrary body shapes in two- and three-dimensional contexts, with a particular focus on conformal mapping in the plane; the decomposition of the flow into contributions from ambient vorticity and body motion; generalized edge conditions, of which the Kutta condition is a special case; and the calculation of force and moment, with extensive treatments of added mass and the influence of fluid vorticity. The book also contains an extensive primer with all of the necessary mathematical tools. The concepts are demonstrated on several example problems, both classical and modern.

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling
Author: Edward A. Bender
Publisher: Courier Corporation
Total Pages: 273
Release: 2012-05-23
Genre: Mathematics
ISBN: 0486137120

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.

Pyomo – Optimization Modeling in Python

Pyomo – Optimization Modeling in Python
Author: William E. Hart
Publisher: Springer Science & Business Media
Total Pages: 245
Release: 2012-02-15
Genre: Mathematics
ISBN: 146143226X

This book provides a complete and comprehensive reference/guide to Pyomo (Python Optimization Modeling Objects) for both beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. The text illustrates the breadth of the modeling and analysis capabilities that are supported by the software and support of complex real-world applications. Pyomo is an open source software package for formulating and solving large-scale optimization and operations research problems. The text begins with a tutorial on simple linear and integer programming models. A detailed reference of Pyomo's modeling components is illustrated with extensive examples, including a discussion of how to load data from data sources like spreadsheets and databases. Chapters describing advanced modeling capabilities for nonlinear and stochastic optimization are also included. The Pyomo software provides familiar modeling features within Python, a powerful dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. The software supports a different modeling approach than commercial AML (Algebraic Modeling Languages) tools, and is designed for flexibility, extensibility, portability, and maintainability but also maintains the central ideas in modern AMLs.

Mathematical Models of Social Evolution

Mathematical Models of Social Evolution
Author: Richard McElreath
Publisher: University of Chicago Press
Total Pages: 429
Release: 2008-09-15
Genre: Social Science
ISBN: 0226558282

Over the last several decades, mathematical models have become central to the study of social evolution, both in biology and the social sciences. But students in these disciplines often seriously lack the tools to understand them. A primer on behavioral modeling that includes both mathematics and evolutionary theory, Mathematical Models of Social Evolution aims to make the student and professional researcher in biology and the social sciences fully conversant in the language of the field. Teaching biological concepts from which models can be developed, Richard McElreath and Robert Boyd introduce readers to many of the typical mathematical tools that are used to analyze evolutionary models and end each chapter with a set of problems that draw upon these techniques. Mathematical Models of Social Evolution equips behaviorists and evolutionary biologists with the mathematical knowledge to truly understand the models on which their research depends. Ultimately, McElreath and Boyd’s goal is to impart the fundamental concepts that underlie modern biological understandings of the evolution of behavior so that readers will be able to more fully appreciate journal articles and scientific literature, and start building models of their own.

Single-Cell-Based Models in Biology and Medicine

Single-Cell-Based Models in Biology and Medicine
Author: Alexander Anderson
Publisher: Springer Science & Business Media
Total Pages: 346
Release: 2007-08-08
Genre: Mathematics
ISBN: 376438123X

Aimed at postgraduate students in a variety of biology-related disciplines, this volume presents a collection of mathematical and computational single-cell-based models and their application. The main sections cover four general model groupings: hybrid cellular automata, cellular potts, lattice-free cells, and viscoelastic cells. Each section is introduced by a discussion of the applicability of the particular modelling approach and its advantages and disadvantages, which will make the book suitable for students starting research in mathematical biology as well as scientists modelling multicellular processes.