A Gentle Introduction to Homological Mirror Symmetry

A Gentle Introduction to Homological Mirror Symmetry
Author: Raf Bocklandt
Publisher: Cambridge University Press
Total Pages: 403
Release: 2021-08-19
Genre: Mathematics
ISBN: 110848350X

Introduction to homological mirror symmetry from the point of view of representation theory, suitable for graduate students.

Mirror Symmetry

Mirror Symmetry
Author: Kentaro Hori
Publisher: American Mathematical Soc.
Total Pages: 954
Release: 2003
Genre: Mathematics
ISBN: 0821829556

This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.

Instanton Counting, Quantum Geometry and Algebra

Instanton Counting, Quantum Geometry and Algebra
Author: Taro Kimura
Publisher: Springer Nature
Total Pages: 297
Release: 2021-07-05
Genre: Science
ISBN: 3030761908

This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang–Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg–Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the Ω-deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.

Fukaya Categories and Picard-Lefschetz Theory

Fukaya Categories and Picard-Lefschetz Theory
Author: Paul Seidel
Publisher: European Mathematical Society
Total Pages: 340
Release: 2008
Genre: Mathematics
ISBN: 9783037190630

The central objects in the book are Lagrangian submanifolds and their invariants, such as Floer homology and its multiplicative structures, which together constitute the Fukaya category. The relevant aspects of pseudo-holomorphic curve theory are covered in some detail, and there is also a self-contained account of the necessary homological algebra. Generally, the emphasis is on simplicity rather than generality. The last part discusses applications to Lefschetz fibrations and contains many previously unpublished results. The book will be of interest to graduate students and researchers in symplectic geometry and mirror symmetry.

Mirror Symmetry and Algebraic Geometry

Mirror Symmetry and Algebraic Geometry
Author: David A. Cox
Publisher: American Mathematical Soc.
Total Pages: 498
Release: 1999
Genre: Mathematics
ISBN: 082182127X

Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.

Dirichlet Branes and Mirror Symmetry

Dirichlet Branes and Mirror Symmetry
Author:
Publisher: American Mathematical Soc.
Total Pages: 698
Release: 2009
Genre: Mathematics
ISBN: 0821838482

Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.

Integrable Systems

Integrable Systems
Author: N.J. Hitchin
Publisher: Oxford University Press, USA
Total Pages: 148
Release: 2013-03-14
Genre: Mathematics
ISBN: 0199676771

Designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors, this book has its origins in a lecture series given by the internationally renowned authors. Written in an accessible, informal style, it fills a gap in the existing literature.

A Gentle Introduction To Knots, Links And Braids

A Gentle Introduction To Knots, Links And Braids
Author: Ruben Aldrovandi
Publisher: World Scientific
Total Pages: 214
Release: 2021-10-14
Genre: Science
ISBN: 9811248508

The interface between Physics and Mathematics has been increasingly spotlighted by the discovery of algebraic, geometric, and topological properties in physical phenomena. A profound example is the relation of noncommutative geometry, arising from algebras in mathematics, to the so-called quantum groups in the physical viewpoint. Two apparently unrelated puzzles — the solubility of some lattice models in statistical mechanics and the integrability of differential equations for special problems — are encoded in a common algebraic condition, the Yang-Baxter equation. This backdrop motivates the subject of this book, which reveals Knot Theory as a highly intuitive formalism that is intimately connected to Quantum Field Theory and serves as a basis to String Theory.This book presents a didactic approach to knots, braids, links, and polynomial invariants which are powerful and developing techniques that rise up to the challenges in String Theory, Quantum Field Theory, and Statistical Physics. It introduces readers to Knot Theory and its applications through formal and practical (computational) methods, with clarity, completeness, and minimal demand of requisite knowledge on the subject. As a result, advanced undergraduates in Physics, Mathematics, or Engineering, will find this book an excellent and self-contained guide to the algebraic, geometric, and topological tools for advanced studies in theoretical physics and mathematics.

Differential Geometry of Complex Vector Bundles

Differential Geometry of Complex Vector Bundles
Author: Shoshichi Kobayashi
Publisher: Princeton University Press
Total Pages: 317
Release: 2014-07-14
Genre: Mathematics
ISBN: 1400858682

Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Combinatorial Set Theory

Combinatorial Set Theory
Author: Lorenz J. Halbeisen
Publisher: Springer
Total Pages: 586
Release: 2017-12-20
Genre: Mathematics
ISBN: 3319602314

This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.