The Koopman Operator in Systems and Control

The Koopman Operator in Systems and Control
Author: Alexandre Mauroy
Publisher: Springer Nature
Total Pages: 568
Release: 2020-02-22
Genre: Technology & Engineering
ISBN: 3030357139

This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 1009098489

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Dynamic Mode Decomposition

Dynamic Mode Decomposition
Author: J. Nathan Kutz
Publisher: SIAM
Total Pages: 241
Release: 2016-11-23
Genre: Science
ISBN: 1611974496

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Nonlinear Dynamical Systems And Carleman Linearization

Nonlinear Dynamical Systems And Carleman Linearization
Author: Krzysztof Kowalski
Publisher: World Scientific
Total Pages: 192
Release: 1991-03-26
Genre: Mathematics
ISBN: 9814506346

The Carleman linearization has become a new powerful tool in the study of nonlinear dynamical systems. Nevertheless, there is the general lack of familiarity with the Carleman embedding technique among those working in the field of nonlinear models. This book provides a systematic presentation of the Carleman linearization, its generalizations and applications. It also includes a review of existing alternative methods for linearization of nonlinear dynamical systems. There are probably no books covering such a wide spectrum of linearization algorithms. This book also gives a comprehensive introduction to the Kronecker product of matrices, whereas most books deal with it only superficially. The Kronecker product of matrices plays an important role in mathematics and in applications found in theoretical physics.

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos
Author: Stephen Wiggins
Publisher: Springer Science & Business Media
Total Pages: 860
Release: 2006-04-18
Genre: Mathematics
ISBN: 0387217495

This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik

Nonlinear System Identification

Nonlinear System Identification
Author: Stephen A. Billings
Publisher: John Wiley & Sons
Total Pages: 611
Release: 2013-07-29
Genre: Technology & Engineering
ISBN: 1118535553

Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.

Turbulence, Coherent Structures, Dynamical Systems and Symmetry

Turbulence, Coherent Structures, Dynamical Systems and Symmetry
Author: Philip Holmes
Publisher: Cambridge University Press
Total Pages: 403
Release: 2012-02-23
Genre: Mathematics
ISBN: 1107008255

Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Author: John Guckenheimer
Publisher: Springer Science & Business Media
Total Pages: 475
Release: 2013-11-21
Genre: Mathematics
ISBN: 1461211409

An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Dynamic Linear Models with R

Dynamic Linear Models with R
Author: Giovanni Petris
Publisher: Springer Science & Business Media
Total Pages: 258
Release: 2009-06-12
Genre: Mathematics
ISBN: 0387772383

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.