A First Look At Perturbation Theory
Download A First Look At Perturbation Theory full books in PDF, epub, and Kindle. Read online free A First Look At Perturbation Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : James G. Simmonds |
Publisher | : Courier Corporation |
Total Pages | : 162 |
Release | : 1998-01-01 |
Genre | : Mathematics |
ISBN | : 0486675513 |
Undergraduates in engineering and the physical sciences receive a thorough introduction to perturbation theory in this useful and accessible text. Students discover methods for obtaining an approximate solution of a mathematical problem by exploiting the presence of a small, dimensionless parameter — the smaller the parameter, the more accurate the approximate solution. Knowledge of perturbation theory offers a twofold benefit: approximate solutions often reveal the exact solution's essential dependence on specified parameters; also, some problems resistant to numerical solutions may yield to perturbation methods. In fact, numerical and perturbation methods can be combined in a complementary way. The text opens with a well-defined treatment of finding the roots of polynomials whose coefficients contain a small parameter. Proceeding to differential equations, the authors explain many techniques for handling perturbations that reorder the equations or involve an unbounded independent variable. Two disparate practical problems that can be solved efficiently with perturbation methods conclude the volume. Written in an informal style that moves from specific examples to general principles, this elementary text emphasizes the "why" along with the "how"; prerequisites include a knowledge of one-variable calculus and ordinary differential equations. This newly revised second edition features an additional appendix concerning the approximate evaluation of integrals.
Author | : James G. Simmonds |
Publisher | : Courier Corporation |
Total Pages | : 162 |
Release | : 2013-07-04 |
Genre | : Mathematics |
ISBN | : 0486315584 |
Undergraduates in engineering and the physical sciences receive a thorough introduction to perturbation theory in this useful and accessible text. Students discover methods for obtaining an approximate solution of a mathematical problem by exploiting the presence of a small, dimensionless parameter — the smaller the parameter, the more accurate the approximate solution. Knowledge of perturbation theory offers a twofold benefit: approximate solutions often reveal the exact solution's essential dependence on specified parameters; also, some problems resistant to numerical solutions may yield to perturbation methods. In fact, numerical and perturbation methods can be combined in a complementary way. The text opens with a well-defined treatment of finding the roots of polynomials whose coefficients contain a small parameter. Proceeding to differential equations, the authors explain many techniques for handling perturbations that reorder the equations or involve an unbounded independent variable. Two disparate practical problems that can be solved efficiently with perturbation methods conclude the volume. Written in an informal style that moves from specific examples to general principles, this elementary text emphasizes the "why" along with the "how"; prerequisites include a knowledge of one-variable calculus and ordinary differential equations. This newly revised second edition features an additional appendix concerning the approximate evaluation of integrals.
Author | : Tosio Kato |
Publisher | : Springer Science & Business Media |
Total Pages | : 610 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 3662126788 |
Author | : Richard Ernest Bellman |
Publisher | : Courier Corporation |
Total Pages | : 146 |
Release | : 2003-01-01 |
Genre | : Science |
ISBN | : 9780486432588 |
Graduate students receive a stimulating introduction to analytical approximation techniques for solving differential equations in this text, which introduces scientifically significant problems and indicates useful solutions. 1966 edition.
Author | : Mark H. Holmes |
Publisher | : Springer Science & Business Media |
Total Pages | : 344 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461253470 |
This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.
Author | : Norman Bleistein |
Publisher | : Courier Corporation |
Total Pages | : 453 |
Release | : 1986-01-01 |
Genre | : Mathematics |
ISBN | : 0486650820 |
Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
Author | : E. J. Hinch |
Publisher | : Cambridge University Press |
Total Pages | : 178 |
Release | : 1991-10-25 |
Genre | : Mathematics |
ISBN | : 9780521378970 |
A textbook presenting the theory and underlying techniques of perturbation methods in a manner suitable for senior undergraduates from a broad range of disciplines.
Author | : Carl M. Bender |
Publisher | : Springer Science & Business Media |
Total Pages | : 605 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475730691 |
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Author | : Christian Kuehn |
Publisher | : Springer |
Total Pages | : 816 |
Release | : 2015-02-25 |
Genre | : Mathematics |
ISBN | : 3319123165 |
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
Author | : T. M. Helliwell |
Publisher | : Cambridge University Press |
Total Pages | : 709 |
Release | : 2020-12-10 |
Genre | : Science |
ISBN | : 1108834973 |
Presents classical mechanics as a thriving field with strong connections to modern physics, with numerous worked examples and homework problems.