Computational Methods for Multiphase Flow

Computational Methods for Multiphase Flow
Author: Andrea Prosperetti
Publisher: Cambridge University Press
Total Pages: 392
Release: 2009-06-25
Genre: Mathematics
ISBN: 1139459902

Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.

Particle Image Velocimetry

Particle Image Velocimetry
Author: Ronald J. Adrian
Publisher: Cambridge University Press
Total Pages: 585
Release: 2011
Genre: Science
ISBN: 0521440084

Particle image velocimetry, or PIV, refers to a class of methods used in experimental fluid mechanics to determine instantaneous fields of the vector velocity by measuring the displacements of numerous fine particles that accurately follow the motion of the fluid. Although the concept of measuring particle displacements is simple in essence, the factors that need to be addressed to design and implement PIV systems that achieve reliable, accurate, and fast measurements and to interpret the results are surprisingly numerous. The aim of this book is to analyze and explain them comprehensively.

Fluid Flow Phenomena

Fluid Flow Phenomena
Author: Paolo Orlandi
Publisher: Springer Science & Business Media
Total Pages: 369
Release: 2012-12-06
Genre: Science
ISBN: 9401142815

This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.

Bubbly Flows

Bubbly Flows
Author: Martin Sommerfeld
Publisher: Springer Science & Business Media
Total Pages: 354
Release: 2012-12-06
Genre: Science
ISBN: 3642185401

The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.

Turbulence Structure and Modulation

Turbulence Structure and Modulation
Author: Alfredo Soldati
Publisher: Springer
Total Pages: 319
Release: 2014-05-04
Genre: Technology & Engineering
ISBN: 370912574X

Controlling turbulence is an important issue for a number of technological applications. Several methods to modulate turbulence are currently being investigated. This book describes various aspects of turbulence structure and modulation, and explains and discusses the most promising techniques in detail.

Direct Numerical Simulations of Gas–Liquid Multiphase Flows

Direct Numerical Simulations of Gas–Liquid Multiphase Flows
Author: Grétar Tryggvason
Publisher: Cambridge University Press
Total Pages: 337
Release: 2011-03-10
Genre: Computers
ISBN: 1139496700

Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.

Advances in Computational Methods and Technologies in Aeronautics and Industry

Advances in Computational Methods and Technologies in Aeronautics and Industry
Author: Dietrich Knoerzer
Publisher: Springer Nature
Total Pages: 290
Release: 2022-12-12
Genre: Technology & Engineering
ISBN: 3031120191

This book provides research results using computational methods for fluid dynamics and engineering problems in aeronautics and other scientific and industrial applications. It gives an overview on the state of the art and the technology trends requiring advanced computational methods towards digitization in industrial and scientific processes. The chapters are based on Special Technology Sessions of the WCCM-ECCOMAS Virtual Congress 2021.