A Differential Approach To Geometry
Download A Differential Approach To Geometry full books in PDF, epub, and Kindle. Read online free A Differential Approach To Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Francis Borceux |
Publisher | : Springer Science & Business Media |
Total Pages | : 462 |
Release | : 2013-11-09 |
Genre | : Mathematics |
ISBN | : 3319017365 |
This book presents the classical theory of curves in the plane and three-dimensional space, and the classical theory of surfaces in three-dimensional space. It pays particular attention to the historical development of the theory and the preliminary approaches that support contemporary geometrical notions. It includes a chapter that lists a very wide scope of plane curves and their properties. The book approaches the threshold of algebraic topology, providing an integrated presentation fully accessible to undergraduate-level students. At the end of the 17th century, Newton and Leibniz developed differential calculus, thus making available the very wide range of differentiable functions, not just those constructed from polynomials. During the 18th century, Euler applied these ideas to establish what is still today the classical theory of most general curves and surfaces, largely used in engineering. Enter this fascinating world through amazing theorems and a wide supply of surprising examples. Reach the doors of algebraic topology by discovering just how an integer (= the Euler-Poincaré characteristics) associated with a surface gives you a lot of interesting information on the shape of the surface. And penetrate the intriguing world of Riemannian geometry, the geometry that underlies the theory of relativity. The book is of interest to all those who teach classical differential geometry up to quite an advanced level. The chapter on Riemannian geometry is of great interest to those who have to “intuitively” introduce students to the highly technical nature of this branch of mathematics, in particular when preparing students for courses on relativity.
Author | : David Bachman |
Publisher | : Springer Science & Business Media |
Total Pages | : 167 |
Release | : 2012-02-02 |
Genre | : Mathematics |
ISBN | : 0817683046 |
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.
Author | : John Snygg |
Publisher | : Springer Science & Business Media |
Total Pages | : 472 |
Release | : 2011-12-09 |
Genre | : Mathematics |
ISBN | : 081768283X |
Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Author | : Tristan Needham |
Publisher | : Princeton University Press |
Total Pages | : 530 |
Release | : 2021-07-13 |
Genre | : Mathematics |
ISBN | : 0691203709 |
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.
Author | : Vladimir D. Liseikin |
Publisher | : Springer Science & Business Media |
Total Pages | : 301 |
Release | : 2006-09-12 |
Genre | : Science |
ISBN | : 3540342362 |
The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. In an updated and expanded Second Edition, this monograph gives a detailed treatment based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces.
Author | : Francis Borceux |
Publisher | : Springer |
Total Pages | : 1350 |
Release | : 2013-11-09 |
Genre | : Mathematics |
ISBN | : 9783319018041 |
The Trilogy intends to introduce the reader to the multiple complementary aspects of geometry, paying attention to the historical birth and growth of the ideas and results, and concluding with a contemporary presentation of the various topics considered. Three essentially independent volumes approach geometry via the axiomatic, the algebraic and the differential points of view. The “ruler and compass” approach to geometry, developed by the Greek mathematicians of the Antiquity, remained the only reference in Geometry – and even in Mathematics -- for more than two millenniums. The fruitless efforts for solving the so-called “classical problems” of Greek geometry lead eventually to a deeper reflection on the axiomatic bases of geometry, and in particular to the discovery of projective geometry and non-Euclidean geometries. During the Renaissance, mathematicians start liberating themselves from the “ruler and compass” dogma and use algebraic techniques to investigate geometric situations. The nineteenth century, with the birth of linear algebra and the theory of polynomials, opens new doors and in particular, the fascinating world of algebraic curves. The introduction of differential calculus during the eighteenth century allows widening considerably the range of curves and surfaces considered. The notion of curvature –under multiple forms -- imposes itself as an essential tool for studying the properties of curves and surfaces. And a keen study of some geometrical properties of surfaces gives rise to the theory of algebraic topology. This trilogy is of interest to all those who have to teach or study geometry and need to have a good global overview of the numerous facets of this fascinating topic. It provides both the intuitive and the technical ingredients needed to find one’s way through Euclidean, non-Euclidean, projective, algebraic or differential geometry at a high level.
Author | : M.K. Murray |
Publisher | : CRC Press |
Total Pages | : 292 |
Release | : 1993-04-01 |
Genre | : Mathematics |
ISBN | : 9780412398605 |
Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics. It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry.
Author | : Nicola Gigli |
Publisher | : American Mathematical Soc. |
Total Pages | : 174 |
Release | : 2018-02-23 |
Genre | : Mathematics |
ISBN | : 1470427656 |
The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.
Author | : Torsten Wedhorn |
Publisher | : Springer |
Total Pages | : 366 |
Release | : 2016-07-25 |
Genre | : Mathematics |
ISBN | : 3658106336 |
This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.
Author | : Thomas Andrew Ivey |
Publisher | : American Mathematical Soc. |
Total Pages | : 394 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821833758 |
This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.