A Course in Formal Languages, Automata and Groups

A Course in Formal Languages, Automata and Groups
Author: Ian M. Chiswell
Publisher: Springer Science & Business Media
Total Pages: 162
Release: 2008-11-14
Genre: Mathematics
ISBN: 1848009402

This book is based on notes for a master’s course given at Queen Mary, University of London, in the 1998/9 session. Such courses in London are quite short, and the course consisted essentially of the material in the ?rst three chapters, together with a two-hour lecture on connections with group theory. Chapter 5 is a considerably expanded version of this. For the course, the main sources were the books by Hopcroft and Ullman ([20]), by Cohen ([4]), and by Epstein et al. ([7]). Some use was also made of a later book by Hopcroft and Ullman ([21]). The ulterior motive in the ?rst three chapters is to give a rigorous proof that various notions of recursively enumerable language are equivalent. Three such notions are considered. These are: generated by a type 0 grammar, recognised by a Turing machine (deterministic or not) and de?ned by means of a Godel ̈ numbering, having de?ned “recursively enumerable” for sets of natural numbers. It is hoped that this has been achieved without too many ar- ments using complicated notation. This is a problem with the entire subject, and it is important to understand the idea of the proof, which is often quite simple. Two particular places that are heavy going are the proof at the end of Chapter 1 that a language recognised by a Turing machine is type 0, and the proof in Chapter 2 that a Turing machine computable function is partial recursive.

A Second Course in Formal Languages and Automata Theory

A Second Course in Formal Languages and Automata Theory
Author: Jeffrey Shallit
Publisher: Cambridge University Press
Total Pages: 0
Release: 2009
Genre: Computers
ISBN: 0521865727

A textbook for a graduate course on formal languages and automata theory, building on prior knowledge of theoretical computer models.

An Introduction to Formal Languages and Automata

An Introduction to Formal Languages and Automata
Author: Peter Linz
Publisher: Jones & Bartlett Publishers
Total Pages: 408
Release: 1997
Genre: Computers
ISBN:

An Introduction to Formal Languages & Automata provides an excellent presentation of the material that is essential to an introductory theory of computation course. The text was designed to familiarize students with the foundations & principles of computer science & to strengthen the students' ability to carry out formal & rigorous mathematical argument. Employing a problem-solving approach, the text provides students insight into the course material by stressing intuitive motivation & illustration of ideas through straightforward explanations & solid mathematical proofs. By emphasizing learning through problem solving, students learn the material primarily through problem-type illustrative examples that show the motivation behind the concepts, as well as their connection to the theorems & definitions.

Groups, Languages and Automata

Groups, Languages and Automata
Author: Derek F. Holt
Publisher: Cambridge University Press
Total Pages: 307
Release: 2017-02-23
Genre: Computers
ISBN: 1107152356

A reference book discussing applications of formal language theory to group theory, particularly geometric and computational group theory.

An Introduction to the Theory of Formal Languages and Automata

An Introduction to the Theory of Formal Languages and Automata
Author: Willem J. M. Levelt
Publisher: John Benjamins Publishing
Total Pages: 151
Release: 2008
Genre: Language Arts & Disciplines
ISBN: 9027232504

The present text is a re-edition of Volume I of Formal Grammars in Linguistics and Psycholinguistics, a three-volume work published in 1974. This volume is an entirely self-contained introduction to the theory of formal grammars and automata, which hasn't lost any of its relevance. Of course, major new developments have seen the light since this introduction was first published, but it still provides the indispensible basic notions from which later work proceeded. The author's reasons for writing this text are still relevant: an introduction that does not suppose an acquaintance with sophisticated mathematical theories and methods, that is intended specifically for linguists and psycholinguists (thus including such topics as learnability and probabilistic grammars), and that provides students of language with a reference text for the basic notions in the theory of formal grammars and automata, as they keep being referred to in linguistic and psycholinguistic publications; the subject index of this introduction can be used to find definitions of a wide range of technical terms. An appendix has been added with further references to some of the core new developments since this book originally appeared.

A Course in Formal Languages, Automata and Groups

A Course in Formal Languages, Automata and Groups
Author: Ian M. Chiswell
Publisher: Springer
Total Pages: 157
Release: 2009-02-06
Genre: Mathematics
ISBN: 9781848009394

This book is based on notes for a master’s course given at Queen Mary, University of London, in the 1998/9 session. Such courses in London are quite short, and the course consisted essentially of the material in the ?rst three chapters, together with a two-hour lecture on connections with group theory. Chapter 5 is a considerably expanded version of this. For the course, the main sources were the books by Hopcroft and Ullman ([20]), by Cohen ([4]), and by Epstein et al. ([7]). Some use was also made of a later book by Hopcroft and Ullman ([21]). The ulterior motive in the ?rst three chapters is to give a rigorous proof that various notions of recursively enumerable language are equivalent. Three such notions are considered. These are: generated by a type 0 grammar, recognised by a Turing machine (deterministic or not) and de?ned by means of a Godel ̈ numbering, having de?ned “recursively enumerable” for sets of natural numbers. It is hoped that this has been achieved without too many ar- ments using complicated notation. This is a problem with the entire subject, and it is important to understand the idea of the proof, which is often quite simple. Two particular places that are heavy going are the proof at the end of Chapter 1 that a language recognised by a Turing machine is type 0, and the proof in Chapter 2 that a Turing machine computable function is partial recursive.

Geometric Group Theory

Geometric Group Theory
Author: Clara Löh
Publisher: Springer
Total Pages: 390
Release: 2017-12-19
Genre: Mathematics
ISBN: 3319722549

Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.

Introduction to Formal Languages, Automata Theory and Computation

Introduction to Formal Languages, Automata Theory and Computation
Author: Kamala Krithivasan
Publisher: Pearson Education India
Total Pages: 446
Release: 2009-09
Genre: Computable functions
ISBN: 9788131723562

Introduction to Formal Languages, Automata Theory and Computation presents the theoretical concepts in a concise and clear manner, with an in-depth coverage of formal grammar and basic automata types. The book also examines the underlying theory and principles of computation and is highly suitable to the undergraduate courses in computer science and information technology. An overview of the recent trends in the field and applications are introduced at the appropriate places to stimulate the interest of active learners.

Neural Network Modeling and Identification of Dynamical Systems

Neural Network Modeling and Identification of Dynamical Systems
Author: Yury Tiumentsev
Publisher: Academic Press
Total Pages: 334
Release: 2019-05-17
Genre: Science
ISBN: 0128154306

Neural Network Modeling and Identification of Dynamical Systems presents a new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. - Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and training - Offers application examples of dynamic neural network technologies, primarily related to aircraft - Provides an overview of recent achievements and future needs in this area

An Introduction to Formal Languages and Machine Computation

An Introduction to Formal Languages and Machine Computation
Author: Song Y. Yan
Publisher: World Scientific
Total Pages: 424
Release: 1998
Genre: Computers
ISBN: 9789810234225

This book provides a concise and modern introduction to Formal Languages and Machine Computation, a group of disparate topics in the theory of computation, which includes formal languages, automata theory, turing machines, computability, complexity, number-theoretic computation, public-key cryptography, and some new models of computation, such as quantum and biological computation. As the theory of computation is a subject based on mathematics, a thorough introduction to a number of relevant mathematical topics, including mathematical logic, set theory, graph theory, modern abstract algebra, and particularly number theory, is given in the first chapter of the book. The book can be used either as a textbook for an undergraduate course, for a first-year graduate course, or as a basic reference in the field.