A Concise Course On Stochastic Partial Differential Equations
Download A Concise Course On Stochastic Partial Differential Equations full books in PDF, epub, and Kindle. Read online free A Concise Course On Stochastic Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Claudia Prévôt |
Publisher | : Springer Science & Business Media |
Total Pages | : 149 |
Release | : 2007-06-08 |
Genre | : Mathematics |
ISBN | : 3540707808 |
These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. There are three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material is included in appendices.
Author | : Claudia Prévôt |
Publisher | : Springer |
Total Pages | : 149 |
Release | : 2007-05-26 |
Genre | : Mathematics |
ISBN | : 3540707816 |
These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. There are three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material is included in appendices.
Author | : Leszek Gawarecki |
Publisher | : Springer Science & Business Media |
Total Pages | : 300 |
Release | : 2010-11-29 |
Genre | : Mathematics |
ISBN | : 3642161944 |
The systematic study of existence, uniqueness, and properties of solutions to stochastic differential equations in infinite dimensions arising from practical problems characterizes this volume that is intended for graduate students and for pure and applied mathematicians, physicists, engineers, professionals working with mathematical models of finance. Major methods include compactness, coercivity, monotonicity, in a variety of set-ups. The authors emphasize the fundamental work of Gikhman and Skorokhod on the existence and uniqueness of solutions to stochastic differential equations and present its extension to infinite dimension. They also generalize the work of Khasminskii on stability and stationary distributions of solutions. New results, applications, and examples of stochastic partial differential equations are included. This clear and detailed presentation gives the basics of the infinite dimensional version of the classic books of Gikhman and Skorokhod and of Khasminskii in one concise volume that covers the main topics in infinite dimensional stochastic PDE’s. By appropriate selection of material, the volume can be adapted for a 1- or 2-semester course, and can prepare the reader for research in this rapidly expanding area.
Author | : Robert C. Dalang |
Publisher | : Springer Science & Business Media |
Total Pages | : 230 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 3540859934 |
This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.
Author | : Peter K. Friz |
Publisher | : Springer Nature |
Total Pages | : 354 |
Release | : 2020-05-27 |
Genre | : Mathematics |
ISBN | : 3030415562 |
With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH
Author | : Tomás Roubicek |
Publisher | : Springer Science & Business Media |
Total Pages | : 415 |
Release | : 2006-01-17 |
Genre | : Mathematics |
ISBN | : 3764373970 |
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author | : Giuseppe Da Prato |
Publisher | : Cambridge University Press |
Total Pages | : 513 |
Release | : 2014-04-17 |
Genre | : Mathematics |
ISBN | : 1107055849 |
Updates in this second edition include two brand new chapters and an even more comprehensive bibliography.
Author | : Alexandre J. Chorin |
Publisher | : Springer Science & Business Media |
Total Pages | : 169 |
Release | : 2009-07-24 |
Genre | : Mathematics |
ISBN | : 1441910026 |
This introduction to probability-based modeling covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. Topics covered include conditional expectations, stochastic processes, Langevin equations, and Markov chain Monte Carlo algorithms. The applications include data assimilation, prediction from partial data, spectral analysis and turbulence. A special feature is the systematic analysis of memory effects.
Author | : Lawrence C. Evans |
Publisher | : American Mathematical Soc. |
Total Pages | : 778 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 0821849743 |
This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.