A Collection Of Problems On A Course Of Mathematical Analysis
Download A Collection Of Problems On A Course Of Mathematical Analysis full books in PDF, epub, and Kindle. Read online free A Collection Of Problems On A Course Of Mathematical Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : G. N. Berman |
Publisher | : Elsevier |
Total Pages | : 605 |
Release | : 2016-06-06 |
Genre | : Mathematics |
ISBN | : 1483137341 |
A Collection of Problems on a Course of Mathematical Analysis is a collection of systematically selected problems and exercises (with corresponding solutions) in mathematical analysis. A common instruction precedes a group of problems of the same type. Problems with a physics content are preceded by the necessary physical laws. In the case of more or less difficult problems, hints are given in the answers. This book is comprised of 15 chapters and begins with an overview of functions and methods of specifying them; notation for and classification of functions; elementary investigation of functions; and trigonometric and inverse trigonometric functions. The following chapters deal with limits and tests for their existence; differential calculus, with emphasis on derivatives and differentials; functions and curves; definite and indefinite integrals; and methods of evaluating definite integrals. Some applications of the integral in geometry, statics, and physics are also considered; along with functions of several variables; multiple integrals and iterated integration; line and surface integrals; and differential equations. The final chapter is devoted to trigonometric series. This monograph is intended for students studying mathematical analysis within the framework of a technical college course.
Author | : G. N. Berman |
Publisher | : Elsevier |
Total Pages | : 603 |
Release | : 2014-07-14 |
Genre | : Mathematics |
ISBN | : 1483184846 |
Collection of Problems on a Course of Mathematical Analysis contains selected problems and exercises on the main branches of a Technical College course of mathematical analysis. This book covers the topics of functions, limits, derivatives, differential calculus, curves, definite integral, integral calculus, methods of evaluating definite integrals, and their applications. Other topics explored include numerical problems related to series and the functions of several variables in differential calculus, as well as their applications. The remaining chapters examine the principles of multiple, line, and surface integrals, the trigonometric series, and the elements of the theory of fields. This book is intended for students studying mathematical analysis within the framework of a technical college course.
Author | : Asuman G. Aksoy |
Publisher | : Springer Science & Business Media |
Total Pages | : 257 |
Release | : 2010-03-10 |
Genre | : Mathematics |
ISBN | : 1441912967 |
Education is an admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught. Oscar Wilde, “The Critic as Artist,” 1890. Analysis is a profound subject; it is neither easy to understand nor summarize. However, Real Analysis can be discovered by solving problems. This book aims to give independent students the opportunity to discover Real Analysis by themselves through problem solving. ThedepthandcomplexityofthetheoryofAnalysiscanbeappreciatedbytakingaglimpseatits developmental history. Although Analysis was conceived in the 17th century during the Scienti?c Revolution, it has taken nearly two hundred years to establish its theoretical basis. Kepler, Galileo, Descartes, Fermat, Newton and Leibniz were among those who contributed to its genesis. Deep conceptual changes in Analysis were brought about in the 19th century by Cauchy and Weierstrass. Furthermore, modern concepts such as open and closed sets were introduced in the 1900s. Today nearly every undergraduate mathematics program requires at least one semester of Real Analysis. Often, students consider this course to be the most challenging or even intimidating of all their mathematics major requirements. The primary goal of this book is to alleviate those concerns by systematically solving the problems related to the core concepts of most analysis courses. In doing so, we hope that learning analysis becomes less taxing and thereby more satisfying.
Author | : Lev Izrailevich Volkovyski? |
Publisher | : Courier Corporation |
Total Pages | : 450 |
Release | : 1991-01-01 |
Genre | : Mathematics |
ISBN | : 0486669130 |
Over 1500 problems on theory of functions of the complex variable; coverage of nearly every branch of classical function theory. Topics include conformal mappings, integrals and power series, Laurent series, parametric integrals, integrals of the Cauchy type, analytic continuation, Riemann surfaces, much more. Answers and solutions at end of text. Bibliographical references. 1965 edition.
Author | : G N Berman |
Publisher | : |
Total Pages | : 0 |
Release | : 2023-02-17 |
Genre | : Study Aids |
ISBN | : 9789388127325 |
ABOUT THE BOOK The "Classic Text Series" is a collection of books written by the most famous mathematicians of their time and has been proven over the years as the most preferred concept-building tool to learn mathematics. Arihant's imprints of these books are a way of presenting these timeless classics. Compiled by GN Berman, the book "A Problem Book in Mathematic Analysis" has been updated and deals with the modern treatment of complex concepts of Mathematical Analysis. Formulated as per the latest syllabus, this complete preparatory guide is compiled with systematically arranged Problems, exercises, and solutions to enhance problem-solving skills. The unique features accumulated in this book are: 1. Complete coverage of syllabus in 16 Chapters 2. A corresponding section of the textbook Mathematical Analysis 3. Hints for the solutions are given for more difficult problems 4. Table of values of basic elementary functions is given in Appendix 5. Works as an elementary textbook to build concepts 6. Chapterwise study notes, Miscellaneous Examples, and Answers TABLE OF CONTENT: Function, Limit, Continuity, Derivative & Differential- Differential Calculus, Investigating Functions and Their Graphs, The Definite Integral, Indefinite Integral- Indefinite Calculus, Methods for Evaluating Definite Integrals- Improper Integrals, Application of Integral Calculus, Series, Functions of Several Variables- Differential Calculus, Application of Differential Calculus of Functions of Several Variables, Multiple Integrals, Line Integrals and Surface Integrals, Differential Equations, Trigonometric Series, Elements of Field Theory, Answers, Appendix
Author | : Sterling K. Berberian |
Publisher | : Springer Science & Business Media |
Total Pages | : 249 |
Release | : 2012-09-10 |
Genre | : Mathematics |
ISBN | : 1441985484 |
Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
Author | : Tomasz Radożycki |
Publisher | : Springer |
Total Pages | : 369 |
Release | : 2020-02-21 |
Genre | : Mathematics |
ISBN | : 9783030358433 |
This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
Author | : Tomasz Radożycki |
Publisher | : Springer Nature |
Total Pages | : 375 |
Release | : 2020-02-20 |
Genre | : Mathematics |
ISBN | : 3030358445 |
This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
Author | : Vladimir A. Zorich |
Publisher | : Springer Science & Business Media |
Total Pages | : 610 |
Release | : 2004-01-22 |
Genre | : Mathematics |
ISBN | : 9783540403869 |
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.
Author | : Charles Chapman Pugh |
Publisher | : Springer Science & Business Media |
Total Pages | : 445 |
Release | : 2013-03-19 |
Genre | : Mathematics |
ISBN | : 0387216847 |
Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.