3D Printing and Microfluidics in Dermatology

3D Printing and Microfluidics in Dermatology
Author: Madhulika Pradhan
Publisher: CRC Press
Total Pages: 439
Release: 2024-09-18
Genre: Medical
ISBN: 1040131875

3D Printing and Microfluidics in Dermatology provides a thorough exploration and applications of three-dimensional (3D) printing and microfluidics within the field of dermatology. It investigates various methods utilized in these fields, such as 3D bioprinting, nano-transporters, microscopic fabrication, and device development. The book not only examines practical applications but also delves into the design principles crucial for implementing these techniques using specific materials tailored to their intended purposes. Additionally, it addresses ethical concerns and regulatory considerations pertinent to these evolving technologies. Key highlights include the following: A detailed insight into the utilization of 3D printing and microfluidic technologies for treating skin disorders. Exploration of design concepts necessary for effective implementation, considering the unique properties of materials involved. Coverage of diverse methodologies, ranging from 3D bioprinting to nano-transporters, microscopic fabrication, and device engineering. In-depth discussion on ethical considerations vital for the sustainable development of the industry. Investigation into advancements in material development, device design, fabrication techniques, and performance evaluation through preclinical and clinical studies. This book targets graduate students and researchers in fields such as 3D printing, dermatology, drug delivery, bioengineering, and pharmaceutical sciences.

3D Printed Microfluidic Devices

3D Printed Microfluidic Devices
Author: Savas Tasoglu
Publisher: MDPI
Total Pages: 213
Release: 2019-01-10
Genre: Botanical chemistry
ISBN: 3038974676

This book is a printed edition of the Special Issue "3D Printed Microfluidic Devices" that was published in Micromachines

Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models

Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models
Author: J. Miguel Oliveira
Publisher: Springer Nature
Total Pages: 176
Release: 2020-04-13
Genre: Medical
ISBN: 3030365883

This contributed volume reviews the latest advances on relevant 3D tissue engineered in vitro models of disease making use of biomaterials and microfluidics. The main focus of this book is on advanced biomaterials and microfluidics technologies that have been used in in vitro mimetic 3D models of human diseases and show great promise in revolutionizing personalized medicine. Readers will discover important topics involving biomaterials and microfluidics design, advanced processing techniques, and development and validation of organ- and body-on-a-chip models for bone, liver, and cancer research. An in depth discussion of microfabrication methods for microfluidics development is also provided. This work is edited by two truly multidisciplinary scientists and includes important contributions from well-known experts in their fields. The work is written for both early stage and experienced researchers, and well-established scientists enrolled in the fields of biomaterials, microfluidics, and tissue engineering, and is especially suited to those who wish to become acquainted with the principles and latest developments of in vitro models of diseases, such as professionals working in pharma, medicine, and engineering.

3D Printed Microfluidic Devices

3D Printed Microfluidic Devices
Author: Tasoglu Savas
Publisher:
Total Pages: 1
Release: 2018
Genre: Electronic books
ISBN: 9783038974680

3D printing has revolutionized the microfabrication prototyping workflow over the past few years. With the recent improvements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols as a promising alternative to the time consuming, costly and sophisticated traditional cleanroom fabrication. Microfluidic devices have enabled a wide range of biochemical and clinical applications, such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. Using 3D printing fabrication technologies, alteration of the design features is significantly easier than traditional fabrication, enabling agile iterative design and facilitating rapid prototyping. This can make microfluidic technology more accessible to researchers in various fields and accelerates innovation in the field of microfluidics. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments in 3D printing and its use for various biochemical and biomedical applications.

3D Printing for Microfluidics

3D Printing for Microfluidics
Author: Hua Gong
Publisher:
Total Pages: 141
Release: 2018
Genre:
ISBN:

With the custom 3D printer, smaller valves and pumps become possible, which led to the invention of a new method of creating large numbers of high density chip-to-chip microfluidic interconnects based on either simple integrated microgaskets (SIMS) or controlled-compression in integrated microgaskets (CCIMs). Since these structures are directly 3D printed as part of a device, they require no additional materials or fabrication steps. As a demonstration of the efficacy of this approach, 121 chip-to-chip interconnects in an 11 x 11 array for both SIMs and CCIMs with an areal density of 53 interconnects per mm2 were demonstrated, and tested up to 50 psi without leaking. Finally, these interconnects were used in the development of 3D printed chips with valves having 30x smaller volume than the valves we previously demonstrated. These valves served as a building block for demonstrating the miniaturization potential of an active fluid mixer using our 3D printing tools, materials, and methods. The mixer provided a set of selectable mixing ratios, and was designed in 2 configurations, a linear dilution mixer-pump (LDMP) and a parallelized dilution mixer-pump (PDMP), which occupy volumes of only 1.5 mm3 and 2.6 mm3, respectively.

3D Printing in Medicine

3D Printing in Medicine
Author: Deepak M. Kalaskar
Publisher: Woodhead Publishing
Total Pages: 424
Release: 2022-10-18
Genre: Technology & Engineering
ISBN: 0323902200

3D Printing in Medicine, Second Edition examines the rapidly growing market of 3D-printed biomaterials and their clinical applications. With a particular focus on both commercial and premarket tools, the book looks at their applications within medicine and the future outlook for the field. The chapters are written by field experts actively engaged in educational and research activities at the top universities in the world. The earlier chapters cover the fundamentals of 3D printing, including topics such as materials and hardware. The later chapters go on to cover innovative applications within medicine such as computational analysis of 3D printed constructs, personalized 3D printing - including 3D cell and organ printing and the role of AI - with a subsequent look at the applications of high-resolution printing, 3D printing in diagnostics, drug development, 4D printing, and much more. This updated new edition features completely revised content, with additional new chapters covering organs-on-chips, bioprinting regulations and standards, intellectual properties, and socio-ethical implications of organs-on-demand. Reviews a broad range of biomedical applications of 3D printing biomaterials and technologies Provides an interdisciplinary look at 3D printing in medicine, bridging the gap between engineering and clinical fields Includes completely updated content with additional new chapters, covering topics such as organs-on-chips, bioprinting regulations, intellectual properties, medical standards in 3D printing, and more

Atlas of Interventional Pain Management Procedures

Atlas of Interventional Pain Management Procedures
Author: Dwarkadas K Baheti
Publisher: Jaypee Brothers Medical Publishers
Total Pages: 779
Release: 2022-12
Genre: Medical
ISBN: 9354655475

This atlas is a comprehensive guide to interventional pain management procedures. Divided into 11 sections, the book begins with an overview of the subject, covering radiological anatomy, common image-guided procedures, radiation protection, MRI, protocols, and more. Each of the following sections covers procedures for pain management in different parts on the body, including head and neck, cervical spine, chest and thorax, lumbosacral spine; as well as neuromodulation, and peripheral and sympathetic blocks. The final chapters examine ultrasound guided block and ultrasound guided dry needling. Presented in bullet point style, each topic follows a step by step approach, explaining indications, contraindications, equipment, and procedural techniques. Edited by recognised experts from India, the UK and the US, and with contributions from leading international experts, this book is highly illustrated with radiological images and figures. Access to procedural videos via a QR code is also included with the atlas.

Cell Assembly with 3D Bioprinting

Cell Assembly with 3D Bioprinting
Author: Yong He
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2021-11-15
Genre: Technology & Engineering
ISBN: 3527828583

Provides an up-to-date outline of cell assembly methods and applications of 3D bioprinting Cell Assembly with 3D Bioprinting provides an accesible overview of the layer-by-layer manufacturing of living structures using biomaterials. Focusing on technical implemention in medical and bioengineering applications, this practical guide summarize each key aspect of the 3D bioprinting process. Contributions from a team of leading researchers describe bioink preparation, printing method selection, experimental protocols, integration with specific applications, and more. Detailed, highly illustrated chapters cover different bioprinting approaches and their applications, including coaxial bioprinting, digital light projection, direct ink writing, liquid support bath-assisted 3D printing, and microgel-, microfiber-, and microfluidics-based biofabrication. The book includes practical examples of 3D bioprinting, a protocol for typical 3D bioprinting, and relevant experimental data drawn from recent research. * Highlights the interdisciplinary nature of 3D bioprinting and its applications in biology, medicine, and pharmaceutical science * Summarizes a variety of commonly used 3D bioprinting methods * Describes the design and preparation of various types of bioinks * Discusses applications of 3D bioprinting such as organ development, toxicological research, clinical transplantation, and tissue repair Covering a wide range of topics, Cell Assembly with 3D Bioprinting is essential reading for advanced students, academic researchers, and industry professionals in fields including biomedicine, tissue engineering, bioengineering, drug development, pharmacology, bioglogical screening, and mechanical engineering.