Proceedings

Proceedings
Author:
Publisher:
Total Pages: 202
Release: 2005
Genre: Gallium arsenide semiconductors
ISBN:

High Speed Integrated Circuit Technology - Towards 100 Ghz Logic

High Speed Integrated Circuit Technology - Towards 100 Ghz Logic
Author: Mark Rodwell
Publisher: World Scientific
Total Pages: 372
Release: 2001-04-24
Genre: Technology & Engineering
ISBN: 9814490938

This book reviews the state of the art of very high speed digital integrated circuits. Commercial applications are in fiber optic transmission systems operating at 10, 40, and 100 Gb/s, while the military application is ADCs and DACs for microwave radar. The book contains detailed descriptions of the design, fabrication, and performance of wideband Si/SiGe-, GaAs-, and InP-based bipolar transistors. The analysis, design, and performance of high speed CMOS, silicon bipolar, and III-V digital ICs are presented in detail, with emphasis on application in optical fiber transmission and mixed signal ICs. The underlying physics and circuit design of rapid single flux quantum (RSFQ) superconducting logic circuits are reviewed, and there is extensive coverage of recent integrated circuit results in this technology.

Compound Semiconductor Integrated Circuits

Compound Semiconductor Integrated Circuits
Author: Tho T. Vu
Publisher: World Scientific
Total Pages: 366
Release: 2003-01-01
Genre: Technology & Engineering
ISBN: 9789812796844

This is the book version of a special issue of the International Journal of High Speed Electronics and Systems, reviewing recent work in the field of compound semiconductor integrated circuits. There are fourteen invited papers covering a wide range of applications, frequencies and materials. These papers deal with digital, analog, microwave and millimeter-wave technologies, devices and integrated circuits for wireline fiber-optic lightwave transmissions, and wireless radio-frequency microwave and millimeter-wave communications. In each case, the market is young and experiencing rapid growth for both commercial and millitary applications. Many new semiconductor technologies compete for these new markets, leading to an alphabet soup of semiconductor materials described in these papers. The book also includes three papers focused on radiation effects and reliability in III-V semiconductor electronics, which are useful for reference and future directions. Moreover, reliability is covered in several papers separately for certain process technologies. Contents: Present and Future of High-Speed Compound Semiconductor IC''s (T Otsuji); The Transforming MMIC (E J Martinez); Distributed Amplifier for Fiber-Optic Communication Systems (H Shigematsu et al.); Microwave GaN-Based Power Transistors on Large-Scale Silicon Wafers (S Manohar et al.); Radiation Effects in High Speed III-V Integrated Circuits (T R Weatherford); Radiation Effects in III-V Semiconductor Electronics (B D Weaver et al.); Reliability and Radiation Hardness of Compound Semiconductors (S A Kayali & A H Johnston); and other papers. Readership: Engineers, scientists and graduate students working on high speed electronics and systems, and in the area of compound semiconductor integrated circuits.

Coplanar Microwave Integrated Circuits

Coplanar Microwave Integrated Circuits
Author: Ingo Wolff
Publisher: John Wiley & Sons
Total Pages: 558
Release: 2006-07-11
Genre: Technology & Engineering
ISBN: 0471121010

The tools and techniques to fully leverage coplanar technology Coplanar Microwave Integrated Circuits sets forth the theoretical underpinnings of coplanar waveguides and thoroughly examines the various coplanar components such as discontinuities, lumped elements, resonators, couplers, and filters, which are essential for microwave integrated circuit design. Based on the results of his own research findings, the author effectively demonstrates the many advantages of coplanar waveguide technology for modern circuit design. Following a brief introductory chapter, the text thoroughly covers the material needed for successful design and realization of coplanar microwave circuits, including: * Fundamental transmission properties of coplanar waveguides using a full wave analysis * Detailed analysis of most discontinuities used in coplanar waveguide design * Lumped elements in coplanar technology that are needed in circuit design * Development of software for coplanar circuit design, including a CD-ROM containing a test version of the software for modeling coplanar circuit components and circuits * Application of derived results to build more complex components such as lumped element filters, waveguide filters, millimeter wave filters, end-coupled waveguide structures, waveguide couplers, and Wilkinson couplers for different frequency ranges in coplanar technology The final chapter focuses on special coplanar microwave integrated circuits that have been developed using the software presented in the text. The book concludes with a thought-provoking discussion of the advantages and disadvantages of the coplanar technique. Extensive use of figures and tables helps readers easily digest and visualize complex concepts. A bibliography is included at the end of each chapter for further study and research. Coplanar Microwave Integrated Circuits is recommended for graduate students and engineers in RF microwaves who want to reap all the advantages and possibilities of coplanar technology.

Influence of Temperature on Microelectronics and System Reliability

Influence of Temperature on Microelectronics and System Reliability
Author: Pradeep Lall
Publisher: CRC Press
Total Pages: 327
Release: 2020-07-09
Genre: Technology & Engineering
ISBN: 0429611110

This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The