Computational Science – ICCS 2019

Computational Science – ICCS 2019
Author: João M. F. Rodrigues
Publisher: Springer
Total Pages: 690
Release: 2019-06-07
Genre: Computers
ISBN: 3030227413

The five-volume set LNCS 11536, 11537, 11538, 11539 and 11540 constitutes the proceedings of the 19th International Conference on Computational Science, ICCS 2019, held in Faro, Portugal, in June 2019. The total of 65 full papers and 168 workshop papers presented in this book set were carefully reviewed and selected from 573 submissions (228 submissions to the main track and 345 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track; Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging and Heterogeneous Systems Part III: Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Classifier Learning from Difficult Data; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems Part IV: Track of Data-Driven Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Marine Computing in the Interconnected World for the Benefit of the Society; Track of Multiscale Modelling and Simulation; Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation Part V: Track of Smart Systems: Computer Vision, Sensor Networks and Machine Learning; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Track ICCS 2019 Chapter “Comparing Domain-decomposition Methods for the Parallelization of Distributed Land Surface Models” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Architecture of Computing Systems

Architecture of Computing Systems
Author: Christian Hochberger
Publisher: Springer Nature
Total Pages: 229
Release: 2021-07-14
Genre: Computers
ISBN: 3030816826

This book constitutes the proceedings of the 34th International Conference on Architecture of Computing Systems, ARCS 2021, held virtually in July 2021. The 12 full papers in this volume were carefully reviewed and selected from 24 submissions. 2 workshop papers (VEFRE) are also included. ARCS has always been a conference attracting leading-edge research outcomes in Computer Architecture and Operating Systems, including a wide spectrum of topics ranging from fully integrated, self-powered embedded systems up to high-performance computing systems. It also provides a platform covering newly emerging and cross-cutting topics, such as autonomous and ubiquitous systems, reconfigurable computing and acceleration, neural networks and artificial intelligence. The selected papers cover a variety of topics from the ARCS core domains, including heterogeneous computing, memory optimizations, and organic computing.

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning
Author:
Publisher: Academic Press
Total Pages: 416
Release: 2021-03-28
Genre: Mathematics
ISBN: 0128231246

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. - Updates on new information on the architecture of GPU, NPU and DNN - Discusses In-memory computing, Machine intelligence and Quantum computing - Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance

Information and Software Technologies

Information and Software Technologies
Author: Audrius Lopata
Publisher: Springer Nature
Total Pages: 396
Release: 2021-10-08
Genre: Computers
ISBN: 3030883043

This book constitutes the refereed proceedings of the 27th International Conference on Information and Software Technologies, ICIST 2021, held in Kaunas, Lithuania, in October 2021. The 24 full papers and 6 short papers presented were carefully reviewed and selected from 79 submissions. The papers discuss such topics as ​business intelligence for information and software systems, intelligent methods for data analysis and computer aided software engineering, information technology applications, smart e-learning technologies and applications, language technologies.

Embedded Computer Systems: Architectures, Modeling, and Simulation

Embedded Computer Systems: Architectures, Modeling, and Simulation
Author: Dionisios N. Pnevmatikatos
Publisher: Springer
Total Pages: 486
Release: 2019-08-09
Genre: Computers
ISBN: 3030275620

This book constitutes the refereed proceedings of the 19th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2019, held in Pythagorion, Samos, Greece, in July 2019. The 21 regular papers presented were carefully reviewed and selected from 55 submissions. The papers are organized in topical sections on system design space exploration; deep learning optimization; system security; multi/many-core scheduling; system energy and heat management; many-core communication; and electronic system-level design and verification. In addition there are 13 papers from three special sessions which were organized on topics of current interest: insights from negative results; machine learning implementations; and European projects.

VLSI-SoC: Technology Advancement on SoC Design

VLSI-SoC: Technology Advancement on SoC Design
Author: Victor Grimblatt
Publisher: Springer Nature
Total Pages: 275
Release: 2022-09-28
Genre: Computers
ISBN: 3031168186

This book contains extended and revised versions of the best papers presented at the 29th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2021, held in Singapore, in October 2021*. The 12 full papers included in this volume were carefully reviewed and selected from the 44 papers (out of 75 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like low-power design of RF, analog and mixed-signal circuits, EDA tools for the synthesis and verification of heterogenous SoCs, accelerators for cryptography and deep learning and on-chip Interconnection system, reliability and testing, and integration of 3D-ICs. *The conference was held virtually.

Formal Methods for Industrial Critical Systems

Formal Methods for Industrial Critical Systems
Author: Jan Friso Groote
Publisher: Springer Nature
Total Pages: 246
Release: 2022-09-05
Genre: Computers
ISBN: 3031150082

This book constitutes the proceedings of the 27th International Conference on Formal Methods for Industrial Critical Systems, FMICS 2022, which took place in Warsaw, Poland, in September 2022. The 13 full papers included in this book were carefully reviewed and selected from 22 submissions. They were organized in topical sections as follows: Certification; industrial use cases; testing and monitoring; and methodology.

Robots, Drones, UAVs and UGVs for Operation and Maintenance

Robots, Drones, UAVs and UGVs for Operation and Maintenance
Author: Diego Galar
Publisher: CRC Press
Total Pages: 617
Release: 2020-05-07
Genre: Technology & Engineering
ISBN: 0429839170

Industrial assets (such as railway lines, roads, pipelines) are usually huge, span long distances, and can be divided into clusters or segments that provide different levels of functionality subject to different loads, degradations and environmental conditions, and their efficient management is necessary. The aim of the book is to give comprehensive understanding about the use of autonomous vehicles (context of robotics) for the utilization of inspection and maintenance activities in industrial asset management in different accessibility and hazard levels. The usability of deploying inspection vehicles in an autonomous manner is explained with the emphasis on integrating the total process. Key Features Aims for solutions for maintenance and inspection problems provided by robotics, drones, unmanned air vehicles and unmanned ground vehicles Discusses integration of autonomous vehicles for inspection and maintenance of industrial assets Covers the industrial approach to inspection needs and presents what is needed from the infrastructure end Presents the requirements for robot designers to design an autonomous inspection and maintenance system Includes practical case studies from industries

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms
Author: Paul Bogdan
Publisher: Frontiers Media SA
Total Pages: 180
Release: 2020-06-25
Genre:
ISBN: 2889635317

Widespread chronic diseases (e.g., heart diseases, diabetes and its complications, stroke, cancer, brain diseases) constitute a significant cause of rising healthcare costs and pose a significant burden on quality-of-life for many individuals. Despite the increased need for smart healthcare sensing systems that monitor / measure patients’ body balance, there is no coherent theory that facilitates the modeling of human physiological processes and the design and optimization of future healthcare cyber-physical systems (HCPS). The HCPS are expected to mine the patient’s physiological state based on available continuous sensing, quantify risk indices corresponding to the onset of abnormality, signal the need for critical medical intervention in real-time by communicating patient’s medical information via a network from individual to hospital, and most importantly control (actuate) vital health signals (e.g., cardiac pacing, insulin level, blood pressure) within personalized homeostasis. To prevent health complications, maintain good health and/or avoid fatal conditions calls for a cross-disciplinary approach to HCPS design where recent statistical-physics inspired discoveries done by collaborations between physicists and physicians are shared and enriched by applied mathematicians, control theorists and bioengineers. This critical and urgent multi-disciplinary approach has to unify the current state of knowledge and address the following fundamental challenges: One fundamental challenge is represented by the need to mine and understand the complexity of the structure and dynamics of the physiological systems in healthy homeostasis and associated with a disease (such as diabetes). Along the same lines, we need rigorous mathematical techniques for identifying the interactions between integrated physiologic systems and understanding their role within the overall networking architecture of healthy dynamics. Another fundamental challenge calls for a deeper understanding of stochastic feedback and variability in biological systems and physiological processes, in particular, and for deciphering their implications not only on how to mathematically characterize homeostasis, but also on defining new control strategies that are accounting for intra- and inter-patient specificity – a truly mathematical approach to personalized medicine. Numerous recent studies have demonstrated that heart rate variability, blood glucose, neural signals and other interdependent physiological processes demonstrate fractal and non-stationary characteristics. Exploiting statistical physics concepts, numerous recent research studies demonstrated that healthy human physiological processes exhibit complex critical phenomena with deep implications for how homeostasis should be defined and how control strategies should be developed when prolonged abnormal deviations are observed. In addition, several efforts have tried to connect these fractal characteristics with new optimal control strategies that implemented in medical devices such as pacemakers and artificial pancreas could improve the efficiency of medical therapies and the quality-of-life of patients but neglecting the overall networking architecture of human physiology. Consequently, rigorously analyzing the complexity and dynamics of physiological processes (e.g., blood glucose and its associated implications and interdependencies with other physiological processes) represents a fundamental step towards providing a quantifiable (mathematical) definition of homeostasis in the context of critical phenomena, understanding the onset of chronic diseases, predicting deviations from healthy homeostasis and developing new more efficient medical therapies that carefully account for the physiological complexity, intra- and inter-patient variability, rather than ignoring it. This Research Topic aims to open a synergetic and timely effort between physicians, physicists, applied mathematicians, signal processing, bioengineering and biomedical experts to organize the state of knowledge in mining the complexity of physiological systems and their implications for constructing more accurate mathematical models and designing QoL-aware control strategies implemented in the new generation of HCPS devices. By bringing together multi-disciplinary researchers seeking to understand the many aspects of human physiology and its complexity, we aim at enabling a paradigm shift in designing future medical devices that translates mathematical characteristics in predictable mathematical models quantifying not only the degree of homeostasis, but also providing fundamentally new control strategies within the personalized medicine era.

Advances in Computers

Advances in Computers
Author: Suyel Namasudra
Publisher: Academic Press
Total Pages: 372
Release: 2022-02-04
Genre: Mathematics
ISBN: 0323856896

Advances in Computers, Volume 124 presents updates on innovations in computer hardware, software, theory, design and applications, with this updated volume including new chapters on Traffic-Load-Aware Virtual Channel Power-gating in Network-on-Chips, An Efficient DVS Scheme for On-chip Networks, A Power-Performance Balanced Network-on-Chip for Mixed CPU-GPU Systems, Routerless Networks-on-Chip, Routing Algorithm Design for Power- and Temperature-Aware NoCs, Approximate Communication for Energy-Efficient Network-on-Chip, Power-Efficient NoC Design by Partial Topology Reconfiguration, The Design of a Deflection-based Energy-efficient On-chip Network, and Power-Gating in Networks-on-Chip. - Contains novel subject matter that is relevant to computer science - Includes the expertise of contributing authors - Presents an easy to comprehend writing style