Mathematical Writing

Mathematical Writing
Author: Donald E. Knuth
Publisher: Cambridge University Press
Total Pages: 132
Release: 1989
Genre: Language Arts & Disciplines
ISBN: 9780883850633

This book will help those wishing to teach a course in technical writing, or who wish to write themselves.

How to Write Mathematics

How to Write Mathematics
Author: Norman Earl Steenrod
Publisher: American Mathematical Soc.
Total Pages: 76
Release: 1973-12-31
Genre: Mathematics
ISBN: 9780821896785

This classic guide contains four essays on writing mathematical books and papers at the research level and at the level of graduate texts. The authors are all well known for their writing skills, as well as their mathematical accomplishments. The first essay, by Steenrod, discusses writing books, either monographs or textbooks. He gives both general and specific advice, getting into such details as the need for a good introduction. The longest essay is by Halmos, and contains many of the pieces of his advice that are repeated even today: In order to say something well you must have something to say; write for someone; think about the alphabet. Halmos's advice is systematic and practical. Schiffer addresses the issue by examining four types of mathematical writing: research paper, monograph, survey, and textbook, and gives advice for each form of exposition. Dieudonne's contribution is mostly a commentary on the earlier essays, with clear statements of where he disagrees with his coauthors. The advice in this small book will be useful to mathematicians at all levels.

Deep Learning and the Game of Go

Deep Learning and the Game of Go
Author: Kevin Ferguson
Publisher: Simon and Schuster
Total Pages: 611
Release: 2019-01-06
Genre: Computers
ISBN: 1638354014

Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning

A Student's Guide to the Study, Practice, and Tools of Modern Mathematics

A Student's Guide to the Study, Practice, and Tools of Modern Mathematics
Author: Donald Bindner
Publisher: CRC Press
Total Pages: 269
Release: 2010-11-29
Genre: Mathematics
ISBN: 1439846073

A Student's Guide to the Study, Practice, and Tools of Modern Mathematics provides an accessible introduction to the world of mathematics. It offers tips on how to study and write mathematics as well as how to use various mathematical tools, from LaTeX and Beamer to Mathematica and Maple to MATLAB and R. Along with a color insert, the text include

Writing in Math Class

Writing in Math Class
Author: Marilyn Burns
Publisher: Math Solutions
Total Pages: 210
Release: 1995
Genre: Education
ISBN: 0941355136

Writing in Math Class presents a clear and persuasive case for making writing a part of math instruction. Author and master teacher Marilyn Burns explains why students should write in math class, describes five different types of writing assignments for math, and offer tips and suggestions for teachers. In her usual engaging style, Marilyn Burns tells what happened in actual classrooms when writing was incorporated into math lessons. Illustrated throughout with student work. With a foreword by Susan Ohanian.

A Primer of Real Analytic Functions

A Primer of Real Analytic Functions
Author: KRANTZ
Publisher: Birkhäuser
Total Pages: 190
Release: 2013-03-09
Genre: Science
ISBN: 3034876440

The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.

How I Wish I'd Taught Maths

How I Wish I'd Taught Maths
Author: Craig Barton
Publisher:
Total Pages: 451
Release: 2018
Genre: Effective teaching
ISBN: 9781943920587

Brought to an American audience for the first time, How I Wish I'd Taught Maths is the story of an experienced and successful math teacher's journey into the world of research, and how it has entirely transformed his classroom.

What's Happening in the Mathematical Sciences

What's Happening in the Mathematical Sciences
Author: Barry Cipra
Publisher: American Mathematical Soc.
Total Pages: 108
Release:
Genre: Science
ISBN: 9780821890431

Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.