What Are Tensors Exactly?

What Are Tensors Exactly?
Author: Hongyu Guo
Publisher: World Scientific
Total Pages: 246
Release: 2021-06-16
Genre: Mathematics
ISBN: 9811241031

Tensors have numerous applications in physics and engineering. There is often a fuzzy haze surrounding the concept of tensor that puzzles many students. The old-fashioned definition is difficult to understand because it is not rigorous; the modern definitions are difficult to understand because they are rigorous but at a cost of being more abstract and less intuitive.The goal of this book is to elucidate the concepts in an intuitive way but without loss of rigor, to help students gain deeper understanding. As a result, they will not need to recite those definitions in a parrot-like manner any more. This volume answers common questions and corrects many misconceptions about tensors. A large number of illuminating illustrations helps the reader to understand the concepts more easily.This unique reference text will benefit researchers, professionals, academics, graduate students and undergraduate students.

The Very Basics of Tensors

The Very Basics of Tensors
Author: Nils K. Oeijord
Publisher: iUniverse
Total Pages: 144
Release: 2005-05-25
Genre: Mathematics
ISBN: 0595801722

Tensor calculus is a generalization of vector calculus, and comes near of being a universal language in physics. Physical laws must be independent of any particular coordinate system used in describing them. This requirement leads to tensor calculus. The only prerequisites for reading this book are a familiarity with calculus (including vector calculus) and linear algebra, and some knowledge of differential equations.

Vector and Tensor Analysis with Applications

Vector and Tensor Analysis with Applications
Author: A. I. Borisenko
Publisher: Courier Corporation
Total Pages: 292
Release: 2012-08-28
Genre: Mathematics
ISBN: 0486131904

Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.

Manifolds, Tensors and Forms

Manifolds, Tensors and Forms
Author: Paul Renteln
Publisher: Cambridge University Press
Total Pages: 343
Release: 2014
Genre: Mathematics
ISBN: 1107042194

Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.

A Student's Guide to Vectors and Tensors

A Student's Guide to Vectors and Tensors
Author: Daniel A. Fleisch
Publisher: Cambridge University Press
Total Pages: 206
Release: 2011-09-22
Genre: Science
ISBN: 9780521171908

Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same approach used in his highly popular A Student's Guide to Maxwell's Equations, Fleisch explains vectors and tensors in plain language. Written for undergraduate and beginning graduate students, the book provides a thorough grounding in vectors and vector calculus before transitioning through contra and covariant components to tensors and their applications. Matrices and their algebra are reviewed on the book's supporting website, which also features interactive solutions to every problem in the text where students can work through a series of hints or choose to see the entire solution at once. Audio podcasts give students the opportunity to hear important concepts in the book explained by the author.

Tensors and Their Applications

Tensors and Their Applications
Author: Nazrul Islam
Publisher: New Age International
Total Pages: 6
Release: 2006-12
Genre: Tensor algebra
ISBN: 8122418384

The Book Is Written Is In Easy-To-Read Style With Corresponding Examples. The Main Aim Of This Book Is To Precisely Explain The Fundamentals Of Tensors And Their Applications To Mechanics, Elasticity, Theory Of Relativity, Electromagnetic, Riemannian Geometry And Many Other Disciplines Of Science And Engineering, In A Lucid Manner. The Text Has Been Explained Section Wise, Every Concept Has Been Narrated In The Form Of Definition, Examples And Questions Related To The Concept Taught. The Overall Package Of The Book Is Highly Useful And Interesting For The People Associated With The Field.

An Introduction to Tensors and Group Theory for Physicists

An Introduction to Tensors and Group Theory for Physicists
Author: Nadir Jeevanjee
Publisher: Birkhäuser
Total Pages: 317
Release: 2015-03-11
Genre: Science
ISBN: 3319147943

The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews

Tensor Network Contractions

Tensor Network Contractions
Author: Shi-Ju Ran
Publisher: Springer Nature
Total Pages: 160
Release: 2020-01-27
Genre: Science
ISBN: 3030344894

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.

Tensors: Geometry and Applications

Tensors: Geometry and Applications
Author: J. M. Landsberg
Publisher: American Mathematical Soc.
Total Pages: 464
Release: 2011-12-14
Genre: Mathematics
ISBN: 0821869078

Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.

Tensor and Vector Analysis

Tensor and Vector Analysis
Author: C. E. Springer
Publisher: Courier Corporation
Total Pages: 258
Release: 2013-09-26
Genre: Mathematics
ISBN: 048632091X

Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.