Real-Variable Theory of Musielak-Orlicz Hardy Spaces

Real-Variable Theory of Musielak-Orlicz Hardy Spaces
Author: Dachun Yang
Publisher: Springer
Total Pages: 476
Release: 2017-05-09
Genre: Mathematics
ISBN: 331954361X

The main purpose of this book is to give a detailed and complete survey of recent progress related to the real-variable theory of Musielak–Orlicz Hardy-type function spaces, and to lay the foundations for further applications. The real-variable theory of function spaces has always been at the core of harmonic analysis. Recently, motivated by certain questions in analysis, some more general Musielak–Orlicz Hardy-type function spaces were introduced. These spaces are defined via growth functions which may vary in both the spatial variable and the growth variable. By selecting special growth functions, the resulting spaces may have subtler and finer structures, which are necessary in order to solve various endpoint or sharp problems. This book is written for graduate students and researchers interested in function spaces and, in particular, Hardy-type spaces.

Real-Variable Theory of Hardy Spaces Associated with Generalized Herz Spaces of Rafeiro and Samko

Real-Variable Theory of Hardy Spaces Associated with Generalized Herz Spaces of Rafeiro and Samko
Author: Yinqin Li
Publisher: Springer Nature
Total Pages: 663
Release: 2023-02-14
Genre: Mathematics
ISBN: 9811967881

The real-variable theory of function spaces has always been at the core of harmonic analysis. In particular, the real-variable theory of the Hardy space is a fundamental tool of harmonic analysis, with applications and connections to complex analysis, partial differential equations, and functional analysis. This book is devoted to exploring properties of generalized Herz spaces and establishing a complete real-variable theory of Hardy spaces associated with local and global generalized Herz spaces via a totally fresh perspective. This means that the authors view these generalized Herz spaces as special cases of ball quasi-Banach function spaces. In this book, the authors first give some basic properties of generalized Herz spaces and obtain the boundedness and the compactness characterizations of commutators on them. Then the authors introduce the associated Herz–Hardy spaces, localized Herz–Hardy spaces, and weak Herz–Hardy spaces, and develop a complete real-variable theory of these Herz–Hardy spaces, including their various maximal function, atomic, molecular as well as various Littlewood–Paley function characterizations. As applications, the authors establish the boundedness of some important operators arising from harmonic analysis on these Herz–Hardy spaces. Finally, the inhomogeneous Herz–Hardy spaces and their complete real-variable theory are also investigated. With the fresh perspective and the improved conclusions on the real-variable theory of Hardy spaces associated with ball quasi-Banach function spaces, all the obtained results of this book are new and their related exponents are sharp. This book will be appealing to researchers and graduate students who are interested in function spaces and their applications.

Theory of Besov Spaces

Theory of Besov Spaces
Author: Yoshihiro Sawano
Publisher: Springer
Total Pages: 964
Release: 2018-11-04
Genre: Mathematics
ISBN: 9811308365

This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.

Time-Frequency Analysis of Operators

Time-Frequency Analysis of Operators
Author: Elena Cordero
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 458
Release: 2020-09-21
Genre: Mathematics
ISBN: 311053245X

This authoritative text studies pseudodifferential and Fourier integral operators in the framework of time-frequency analysis, providing an elementary approach, along with applications to almost diagonalization of such operators and to the sparsity of their Gabor representations. Moreover, Gabor frames and modulation spaces are employed to study dispersive equations such as the Schrödinger, wave, and heat equations and related Strichartz problems. The first part of the book is addressed to non-experts, presenting the basics of time-frequency analysis: short time Fourier transform, Wigner distribution and other representations, function spaces and frames theory, and it can be read independently as a short text-book on this topic from graduate and under-graduate students, or scholars in other disciplines.

Morrey Spaces

Morrey Spaces
Author: Yoshihiro Sawano
Publisher: CRC Press
Total Pages: 316
Release: 2020-09-16
Genre: Mathematics
ISBN: 1000064077

Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding

Morrey Spaces

Morrey Spaces
Author: Yoshihiro Sawano
Publisher: CRC Press
Total Pages: 386
Release: 2020-06-08
Genre: Mathematics
ISBN: 1000064131

Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with focus on harmonic analysis in volume I and generalizations and interpolation of Morrey spaces in volume II. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding

Operator Algebras, Operator Theory and Applications

Operator Algebras, Operator Theory and Applications
Author: J. J. Grobler
Publisher: Springer Science & Business Media
Total Pages: 301
Release: 2009-12-24
Genre: Mathematics
ISBN: 3034601743

This volume contains the proceedings of the eighteenth International Workshop on Operator Theory and Applications (IWOTA), hosted by the Unit for Business Mathematics and Informatics of North-West University, Potchefstroom, South Africa from July 3 to 6, 2007. The conference (as well as these proceedings) was dedicated to Professors Joseph A. Ball and Marinus M. Kaashoek on the occasion of their 60th and 70th birthdays, respectively. This conference had a particular focus on Von Neumann algebras at the interface of operator theory with functional analysis and on applications of operator theory to differential equations.