Weighted Inequalities of Hardy Type

Weighted Inequalities of Hardy Type
Author: Alois Kufner
Publisher: World Scientific
Total Pages: 380
Release: 2003
Genre: Mathematics
ISBN: 9789812381958

Inequalities play an important role in almost all branches of mathematics as well as in other areas of science and engineering. This book surveys the present state of the theory of weighted integral inequalities of Hardy type, including modifications concerning Hardy-Steklov operators, and some basic results about Hardy type inequalities and their limit (Carleman-Knopp type) inequalities. It also describes some rather new fields such as higher order and fractional order Hardy type inequalities and integral inequalities on the cone of monotone functions together with some applications and open problems. The book can serve as a reference and a source of inspiration for researchers working in these and related areas, but could also be used for advanced graduate courses.

Weighted Inequalities Of Hardy Type (Second Edition)

Weighted Inequalities Of Hardy Type (Second Edition)
Author: Lars-erik Persson
Publisher: World Scientific Publishing Company
Total Pages: 480
Release: 2017-06-16
Genre: Mathematics
ISBN: 9813140666

Inequalities play an important role in almost all branches of mathematics as well as in other areas of science and engineering. This book surveys the present state of the theory of weighted integral inequalities of Hardy type, including modifications concerning Hardy-Steklov operators, and some basic results about Hardy-type inequalities and their limit (Carleman-Knopp type) inequalities. It also describes some rather new areas such as higher order and fractional order Hardy-type inequalities and integral inequalities on the cone of monotone functions, together with some applications and open problems.In this second edition, all chapters in the first edition have been updated with new information. Moreover, a new chapter contains new and complementary information concerning: (a) a convexity approach to prove and explain Hardy-type inequalities; (b) sharp constants; (c) scales of inequalities to characterize Hardy-type inequalities; (d) Hardy-type inequalities in other function spaces; and (e) a number of new open questions.

Variable Lebesgue Spaces

Variable Lebesgue Spaces
Author: David V. Cruz-Uribe
Publisher: Springer Science & Business Media
Total Pages: 316
Release: 2013-02-12
Genre: Mathematics
ISBN: 3034805489

This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.​

Inequalities

Inequalities
Author: G. H. Hardy
Publisher: Cambridge University Press
Total Pages: 344
Release: 1952
Genre: Mathematics
ISBN: 9780521358804

This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.

Hardy Inequalities on Homogeneous Groups

Hardy Inequalities on Homogeneous Groups
Author: Michael Ruzhansky
Publisher: Springer
Total Pages: 579
Release: 2019-07-02
Genre: Mathematics
ISBN: 303002895X

This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.