Web App Development and Real-Time Web Analytics with Python

Web App Development and Real-Time Web Analytics with Python
Author: Tshepo Chris Nokeri
Publisher: Apress
Total Pages: 226
Release: 2021-11-20
Genre: Computers
ISBN: 9781484277829

Learn to develop and deploy dashboards as web apps using the Python programming language, and how to integrate algorithms into web apps. Author Tshepo Chris Nokeri begins by introducing you to the basics of constructing and styling static and interactive charts and tables before exploring the basics of HTML, CSS, and Bootstrap, including an approach to building web pages with HTML. From there, he’ll show you the key Python web frameworks and techniques for building web apps with them. You’ll then see how to style web apps and incorporate themes, including interactive charts and tables to build dashboards, followed by a walkthrough of creating URL routes and securing web apps. You’ll then progress to more advanced topics, like building machine learning algorithms and integrating them into a web app. The book concludes with a demonstration of how to deploy web apps in prevalent cloud platforms. Web App Development and Real-Time Web Analytics with Python is ideal for intermediate data scientists, machine learning engineers, and web developers, who have little or no knowledge about building web apps that implement bootstrap technologies. After completing this book, you will have the knowledge necessary to create added value for your organization, as you will understand how to link front-end and back-end development, including machine learning. What You Will Learn Create interactive graphs and render static graphs into interactive ones Understand the essentials of HTML, CSS, and Bootstrap Gain insight into the key Python web frameworks, and how to develop web applications using them Develop machine learning algorithms and integrate them into web apps Secure web apps and deploy them to cloud platforms Who This Book Is For Intermediate data scientists, machine learning engineers, and web developers.

Network Data Analytics

Network Data Analytics
Author: K. G. Srinivasa
Publisher: Springer
Total Pages: 406
Release: 2018-04-26
Genre: Computers
ISBN: 3319778005

In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.

Building the Realtime User Experience

Building the Realtime User Experience
Author: Ted Roden
Publisher: "O'Reilly Media, Inc."
Total Pages: 323
Release: 2010-06-23
Genre: Computers
ISBN: 1449395945

The Web is increasingly happening in realtime. With websites such as Facebook and Twitter leading the way, users are coming to expect that all sites should serve content as it occurs—on smartphones as well as computers. This book shows you how to build realtime user experiences by adding chat, streaming content, and including more features on your site one piece at a time, without making big changes to the existing infrastructure. You'll also learn how to serve realtime content beyond the browser. Throughout the book are many practical JavaScript and Python examples for advanced web developers that you can use on your site now. And in the final chapter, you'll build a location-aware game that combines all of the technologies discussed. Use the latest realtime syndication technology, including PubSubHubbub Build dynamic widgets on your homepage to show realtime updates from several sources Learn how to use long polling to "push" content from your server to browsers Create an application using the Tornado web server that makes sense of massive amounts of streaming content Understand the unique requirements for setting up a basic chat service Use IM and SMS to enable users to interact with your site outside of a web browser Implement custom analytics to measure engagement in realtime

Real-Time Analytics

Real-Time Analytics
Author: Byron Ellis
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2014-06-23
Genre: Computers
ISBN: 1118838025

Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.

Getting Started with Streamlit for Data Science

Getting Started with Streamlit for Data Science
Author: Tyler Richards
Publisher: Packt Publishing Ltd
Total Pages: 282
Release: 2021-08-20
Genre: Computers
ISBN: 1800563205

Create, deploy, and test your Python applications, analyses, and models with ease using Streamlit Key Features Learn how to showcase machine learning models in a Streamlit application effectively and efficiently Become an expert Streamlit creator by getting hands-on with complex application creation Discover how Streamlit enables you to create and deploy apps effortlessly Book DescriptionStreamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time. You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you’ll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps. By the end of this book, you’ll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.What you will learn Set up your first development environment and create a basic Streamlit app from scratch Explore methods for uploading, downloading, and manipulating data in Streamlit apps Create dynamic visualizations in Streamlit using built-in and imported Python libraries Discover strategies for creating and deploying machine learning models in Streamlit Use Streamlit sharing for one-click deployment Beautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebar Implement best practices for prototyping your data science work with Streamlit Who this book is for This book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you’re a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.

Beginning Mobile Application Development in the Cloud

Beginning Mobile Application Development in the Cloud
Author: Richard Rodger
Publisher: John Wiley & Sons
Total Pages: 552
Release: 2011-10-14
Genre: Computers
ISBN: 1118203356

Learn how to build apps for mobile devices on Cloud platforms The marketplace for apps is ever expanding, increasing the potential to make money. With this guide, you'll learn how to build cross-platform applications for mobile devices that are supported by the power of Cloud-based services such as Amazon Web Services. An introduction to Cloud-based applications explains how to use HTML5 to create cross-platform mobile apps and then use Cloud services to enhance those apps. You'll learn how to build your first app with HTML5 and set it up in the Cloud, while also discovering how to use jQuery to your advantage. Highlights the skills and knowledge you need to create successful apps for mobile devices with HTML5 Takes you through the steps for building web applications for the iPhone and Android Details how to enhance your app through faster launching, touch vs. click, storage capabilities, and a cache Looks at how best to use JSON, FourSquare, jQuery, AJAX, and more Shares tips for creating hybrid apps that run natively If you're interested in having your application be one of the 200,000+ apps featured in the iPhone store or the 50,000+ in the Android store, then you need this book.

Web App Development Made Simple with Streamlit

Web App Development Made Simple with Streamlit
Author: Rosario Moscato
Publisher: Packt Publishing Ltd
Total Pages: 350
Release: 2024-02-09
Genre: Computers
ISBN: 1835085938

Unlock the full potential of Streamlit, mastering web app development from setup to deployment with practical guidance, advanced techniques, and real-world examples Key Features Identify and overcome web development challenges, crafting dedicated application skeletons using Streamlit Understand how Streamlit's widgets and components work to implement any kind of web app Manage web application development and deployment with ease using the Streamlit Cloud service Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThis book is a comprehensive guide to the Streamlit open-source Python library and simplifying the process of creating web applications. Through hands-on guidance and realistic examples, you’ll progress from crafting simple to sophisticated web applications from scratch. This book covers everything from understanding Streamlit's central principles, modules, basic features, and widgets to advanced skills such as dealing with databases, hashes, sessions, and multipages. Starting with fundamental concepts like operation systems virtualization, IDEs, development environments, widgets, scripting, and the anatomy of web apps, the initial chapters set the groundwork. You’ll then apply this knowledge to develop some real web apps, gradually advancing to more complex apps, incorporating features like natural language processing (NLP), computer vision, dashboards with interactive charts, file uploading, and much more. The book concludes by delving into the implementation of advanced skills and deployment techniques. By the end of this book, you’ll have transformed into a proficient developer, equipped with advanced skills for handling databases, implementing secure login processes, managing session states, creating multipage applications, and seamlessly deploying them on the cloud.What you will learn Develop interactive web apps with Streamlit and deploy them seamlessly on the cloud Acquire in-depth theoretical and practical expertise in using Streamlit for app development Use themes and customization for visually appealing web apps tailored to specific needs Implement advanced features including secure login, signup processes, file uploaders, and database connections Build a catalog of scripts and routines to efficiently implement new web apps Attain autonomy in adopting new Streamlit features rapidly and effectively Who this book is for This book is for Python programmers, web developers, computer science students, and IT enthusiasts with a foundation in Python (or any programming language) who have a passion for creating visually appealing applications. If you already know how to write programs, this book will help you evolve into an adept web application developer skilled at converting command-line tools into impressive, cloud-hosted applications.

Learn Python 3 the Hard Way

Learn Python 3 the Hard Way
Author: Zed A. Shaw
Publisher: Addison-Wesley Professional
Total Pages: 752
Release: 2017-06-26
Genre: Computers
ISBN: 0134693906

You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3

Data Science in Production

Data Science in Production
Author: Ben Weber
Publisher:
Total Pages: 234
Release: 2020
Genre:
ISBN: 9781652064633

Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub.

Mastering Shiny

Mastering Shiny
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
Total Pages: 372
Release: 2021-04-29
Genre: Computers
ISBN: 149204735X

Master the Shiny web framework—and take your R skills to a whole new level. By letting you move beyond static reports, Shiny helps you create fully interactive web apps for data analyses. Users will be able to jump between datasets, explore different subsets or facets of the data, run models with parameter values of their choosing, customize visualizations, and much more. Hadley Wickham from RStudio shows data scientists, data analysts, statisticians, and scientific researchers with no knowledge of HTML, CSS, or JavaScript how to create rich web apps from R. This in-depth guide provides a learning path that you can follow with confidence, as you go from a Shiny beginner to an expert developer who can write large, complex apps that are maintainable and performant. Get started: Discover how the major pieces of a Shiny app fit together Put Shiny in action: Explore Shiny functionality with a focus on code samples, example apps, and useful techniques Master reactivity: Go deep into the theory and practice of reactive programming and examine reactive graph components Apply best practices: Examine useful techniques for making your Shiny apps work well in production