Wavelets And Their Applications
Download Wavelets And Their Applications full books in PDF, epub, and Kindle. Read online free Wavelets And Their Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Lokenath Debnath |
Publisher | : Springer Science & Business Media |
Total Pages | : 575 |
Release | : 2011-06-28 |
Genre | : Technology & Engineering |
ISBN | : 1461200970 |
Overview Historically, the concept of "ondelettes" or "wavelets" originated from the study of time-frequency signal analysis, wave propagation, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982, Jean MorIet, in collaboration with a group of French engineers, first introduced the idea of wavelets as a family of functions constructed by using translation and dilation of a single function, called the mother wavelet, for the analysis of nonstationary signals. However, this new concept can be viewed as the synthesis of various ideas originating from different disciplines including mathematics (Calder6n-Zygmund operators and Littlewood-Paley theory), physics (coherent states in quantum mechanics and the renormalization group), and engineering (quadratic mirror filters, sideband coding in signal processing, and pyramidal algorithms in image processing). Wavelet analysis is an exciting new method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, image processing, pattern recognition, computer graphics, the detection of aircraft and submarines, and improvement in CAT scans and other medical image technology. Wavelets allow complex information such as music, speech, images, and patterns to be decomposed into elementary forms, called the fundamental building blocks, at different positions and scales and subsequently reconstructed with high precision.
Author | : Michel Misiti |
Publisher | : John Wiley & Sons |
Total Pages | : 270 |
Release | : 2013-03-01 |
Genre | : Technology & Engineering |
ISBN | : 1118613597 |
The last 15 years have seen an explosion of interest in wavelets with applications in fields such as image compression, turbulence, human vision, radar and earthquake prediction. Wavelets represent an area that combines signal in image processing, mathematics, physics and electrical engineering. As such, this title is intended for the wide audience that is interested in mastering the basic techniques in this subject area, such as decomposition and compression.
Author | : John J. Benedetto |
Publisher | : CRC Press |
Total Pages | : 586 |
Release | : 2021-07-28 |
Genre | : Mathematics |
ISBN | : 1000443469 |
Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.
Author | : Mani Mehra |
Publisher | : Springer |
Total Pages | : 185 |
Release | : 2018-11-03 |
Genre | : Mathematics |
ISBN | : 9811325952 |
This book provides comprehensive information on the conceptual basis of wavelet theory and it applications. Maintaining an essential balance between mathematical rigour and the practical applications of wavelet theory, the book is closely linked to the wavelet MATLAB toolbox, which is accompanied, wherever applicable, by relevant MATLAB codes. The book is divided into four parts, the first of which is devoted to the mathematical foundations. The second part offers a basic introduction to wavelets. The third part discusses wavelet-based numerical methods for differential equations, while the last part highlights applications of wavelets in other fields. The book is ideally suited as a text for undergraduate and graduate students of mathematics and engineering.
Author | : Charles K. Chui |
Publisher | : Elsevier |
Total Pages | : 281 |
Release | : 2016-06-03 |
Genre | : Science |
ISBN | : 1483282864 |
Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.
Author | : Eric J. Stollnitz |
Publisher | : Morgan Kaufmann |
Total Pages | : 292 |
Release | : 1996 |
Genre | : Computers |
ISBN | : 9781558603752 |
This introduction to wavelets provides computer graphics professionals and researchers with the mathematical foundations for understanding and applying this powerful tool.
Author | : Marco Gallegati |
Publisher | : Springer |
Total Pages | : 271 |
Release | : 2014-08-04 |
Genre | : Business & Economics |
ISBN | : 3319070614 |
This book deals with the application of wavelet and spectral methods for the analysis of nonlinear and dynamic processes in economics and finance. It reflects some of the latest developments in the area of wavelet methods applied to economics and finance. The topics include business cycle analysis, asset prices, financial econometrics, and forecasting. An introductory paper by James Ramsey, providing a personal retrospective of a decade's research on wavelet analysis, offers an excellent overview over the field.
Author | : David K. Ruch |
Publisher | : John Wiley & Sons |
Total Pages | : 502 |
Release | : 2011-09-15 |
Genre | : Mathematics |
ISBN | : 1118165667 |
A self-contained, elementary introduction to wavelet theory and applications Exploring the growing relevance of wavelets in the field of mathematics, Wavelet Theory: An Elementary Approach with Applications provides an introduction to the topic, detailing the fundamental concepts and presenting its major impacts in the world beyond academia. Drawing on concepts from calculus and linear algebra, this book helps readers sharpen their mathematical proof writing and reading skills through interesting, real-world applications. The book begins with a brief introduction to the fundamentals of complex numbers and the space of square-integrable functions. Next, Fourier series and the Fourier transform are presented as tools for understanding wavelet analysis and the study of wavelets in the transform domain. Subsequent chapters provide a comprehensive treatment of various types of wavelets and their related concepts, such as Haar spaces, multiresolution analysis, Daubechies wavelets, and biorthogonal wavelets. In addition, the authors include two chapters that carefully detail the transition from wavelet theory to the discrete wavelet transformations. To illustrate the relevance of wavelet theory in the digital age, the book includes two in-depth sections on current applications: the FBI Wavelet Scalar Quantization Standard and image segmentation. In order to facilitate mastery of the content, the book features more than 400 exercises that range from theoretical to computational in nature and are structured in a multi-part format in order to assist readers with the correct proof or solution. These problems provide an opportunity for readers to further investigate various applications of wavelets. All problems are compatible with software packages and computer labs that are available on the book's related Web site, allowing readers to perform various imaging/audio tasks, explore computer wavelet transformations and their inverses, and visualize the applications discussed throughout the book. Requiring only a prerequisite knowledge of linear algebra and calculus, Wavelet Theory is an excellent book for courses in mathematics, engineering, and physics at the upper-undergraduate level. It is also a valuable resource for mathematicians, engineers, and scientists who wish to learn about wavelet theory on an elementary level.
Author | : Todd Ogden |
Publisher | : Springer Science & Business Media |
Total Pages | : 218 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461207096 |
I once heard the book by Meyer (1993) described as a "vulgarization" of wavelets. While this is true in one sense of the word, that of making a sub ject popular (Meyer's book is one of the early works written with the non specialist in mind), the implication seems to be that such an attempt some how cheapens or coarsens the subject. I have to disagree that popularity goes hand-in-hand with debasement. is certainly a beautiful theory underlying wavelet analysis, there is While there plenty of beauty left over for the applications of wavelet methods. This book is also written for the non-specialist, and therefore its main thrust is toward wavelet applications. Enough theory is given to help the reader gain a basic understanding of how wavelets work in practice, but much of the theory can be presented using only a basic level of mathematics. Only one theorem is for mally stated in this book, with only one proof. And these are only included to introduce some key concepts in a natural way.
Author | : Wolfgang Härdle |
Publisher | : Springer Science & Business Media |
Total Pages | : 276 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461222222 |
The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This te. xt grew out of a French-German cooperation (Seminaire Paris Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994.