Wavelet Methods In Mathematical Analysis And Engineering
Download Wavelet Methods In Mathematical Analysis And Engineering full books in PDF, epub, and Kindle. Read online free Wavelet Methods In Mathematical Analysis And Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Alain Damlamian |
Publisher | : World Scientific |
Total Pages | : 190 |
Release | : 2010-09-21 |
Genre | : Mathematics |
ISBN | : 9814464058 |
This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a state-of-the-art in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective.The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented. Applications range for the reconstruction of noisy or blurred images, pattern and face recognition, to nonlinear approximation in strongly anisotropic contexts, and to the classification tools based on multifractal analysis.
Author | : Alain Damlamian |
Publisher | : World Scientific |
Total Pages | : 190 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 9814322865 |
This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a state-of-the-art in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented. Applications range for the reconstruction of noisy or blurred images, pattern and face recognition, to nonlinear approximation in strongly anisotropic contexts, and to the classification tools based on multifractal analysis.
Author | : Donald B. Percival |
Publisher | : Cambridge University Press |
Total Pages | : 628 |
Release | : 2006-02-27 |
Genre | : Mathematics |
ISBN | : 1107717396 |
This introduction to wavelet analysis 'from the ground level and up', and to wavelet-based statistical analysis of time series focuses on practical discrete time techniques, with detailed descriptions of the theory and algorithms needed to understand and implement the discrete wavelet transforms. Numerous examples illustrate the techniques on actual time series. The many embedded exercises - with complete solutions provided in the Appendix - allow readers to use the book for self-guided study. Additional exercises can be used in a classroom setting. A Web site offers access to the time series and wavelets used in the book, as well as information on accessing software in S-Plus and other languages. Students and researchers wishing to use wavelet methods to analyze time series will find this book essential.
Author | : Charles K. Chui |
Publisher | : SIAM |
Total Pages | : 228 |
Release | : 1997-01-01 |
Genre | : Mathematics |
ISBN | : 9780898719727 |
Wavelets continue to be powerful mathematical tools that can be used to solve problems for which the Fourier (spectral) method does not perform well or cannot handle. This book is for engineers, applied mathematicians, and other scientists who want to learn about using wavelets to analyze, process, and synthesize images and signals. Applications are described in detail and there are step-by-step instructions about how to construct and apply wavelets. The only mathematically rigorous monograph written by a mathematician specifically for nonspecialists, it describes the basic concepts of these mathematical techniques, outlines the procedures for using them, compares the performance of various approaches, and provides information for problem solving, putting the reader at the forefront of current research.
Author | : Sandeep Kumar |
Publisher | : CRC Press |
Total Pages | : 230 |
Release | : 2019-07-09 |
Genre | : Mathematics |
ISBN | : 1351685449 |
This book provides good coverage of the powerful numerical techniques namely, finite element and wavelets, for the solution of partial differential equation to the scientists and engineers with a modest mathematical background. The objective of the book is to provide the necessary mathematical foundation for the advanced level applications of these numerical techniques. The book begins with the description of the steps involved in finite element and wavelets-Galerkin methods. The knowledge of Hilbert and Sobolev spaces is needed to understand the theory of finite element and wavelet-based methods. Therefore, an overview of essential content such as vector spaces, norm, inner product, linear operators, spectral theory, dual space, and distribution theory, etc. with relevant theorems are presented in a coherent and accessible manner. For the graduate students and researchers with diverse educational background, the authors have focused on the applications of numerical techniques which are developed in the last few decades. This includes the wavelet-Galerkin method, lifting scheme, and error estimation technique, etc. Features: • Computer programs in Mathematica/Matlab are incorporated for easy understanding of wavelets. • Presents a range of workout examples for better comprehension of spaces and operators. • Algorithms are presented to facilitate computer programming. • Contains the error estimation techniques necessary for adaptive finite element method. This book is structured to transform in step by step manner the students without any knowledge of finite element, wavelet and functional analysis to the students of strong theoretical understanding who will be ready to take many challenging research problems in this area.
Author | : A. Cohen |
Publisher | : Elsevier |
Total Pages | : 357 |
Release | : 2003-04-29 |
Genre | : Mathematics |
ISBN | : 0080537855 |
Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are:1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions.2. Full treatment of the theoretical foundations that are crucial for the analysisof wavelets and other related multiscale methods : function spaces, linear and nonlinear approximation, interpolation theory.3. Applications of these concepts to the numerical treatment of partial differential equations : multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies.
Author | : Howard L. Resnikoff |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 146120593X |
This text gives a clear introduction to the ideas and methods of wavelet analysis, making concepts understandable by relating them to methods in mathematics and engineering. It shows how to apply wavelet analysis to digital signal processing and presents a wide variety of applications.
Author | : Pierre Bremaud |
Publisher | : Springer Science & Business Media |
Total Pages | : 263 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 147573669X |
From the reviews: "[...] the interested reader will find in Bremaud’s book an invaluable reference because of its coverage, scope and style, as well as of the unified treatment it offers of (signal processing oriented) Fourier and wavelet basics." Mathematical Reviews
Author | : Peter Nickolas |
Publisher | : Cambridge University Press |
Total Pages | : 275 |
Release | : 2017-01-11 |
Genre | : Mathematics |
ISBN | : 1316727939 |
This text offers an excellent introduction to the mathematical theory of wavelets for senior undergraduate students. Despite the fact that this theory is intrinsically advanced, the author's elementary approach makes it accessible at the undergraduate level. Beginning with thorough accounts of inner product spaces and Hilbert spaces, the book then shifts its focus to wavelets specifically, starting with the Haar wavelet, broadening to wavelets in general, and culminating in the construction of the Daubechies wavelets. All of this is done using only elementary methods, bypassing the use of the Fourier integral transform. Arguments using the Fourier transform are introduced in the final chapter, and this less elementary approach is used to outline a second and quite different construction of the Daubechies wavelets. The main text of the book is supplemented by more than 200 exercises ranging in difficulty and complexity.
Author | : You-He Zhou |
Publisher | : Springer Nature |
Total Pages | : 478 |
Release | : 2021-03-09 |
Genre | : Technology & Engineering |
ISBN | : 9813366435 |
This book summarizes the basic theory of wavelets and some related algorithms in an easy-to-understand language from the perspective of an engineer rather than a mathematician. In this book, the wavelet solution schemes are systematically established and introduced for solving general linear and nonlinear initial boundary value problems in engineering, including the technique of boundary extension in approximating interval-bounded functions, the calculation method for various connection coefficients, the single-point Gaussian integration method in calculating the coefficients of wavelet expansions and unique treatments on nonlinear terms in differential equations. At the same time, this book is supplemented by a large number of numerical examples to specifically explain procedures and characteristics of the method, as well as detailed treatments for specific problems. Different from most of the current monographs focusing on the basic theory of wavelets, it focuses on the use of wavelet-based numerical methods developed by the author over the years. Even for the necessary basic theory of wavelet in engineering applications, this book is based on the author’s own understanding in plain language, instead of a relatively difficult professional mathematical description. This book is very suitable for students, researchers and technical personnel who only want to need the minimal knowledge of wavelet method to solve specific problems in engineering.