Visualizing Mathematics With 3d Printing
Download Visualizing Mathematics With 3d Printing full books in PDF, epub, and Kindle. Read online free Visualizing Mathematics With 3d Printing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Henry Segerman |
Publisher | : JHU Press |
Total Pages | : 201 |
Release | : 2016-10-04 |
Genre | : Mathematics |
ISBN | : 1421420368 |
The first book to explain mathematics using 3D printed models. Winner of the Technical Text of the Washington Publishers Wouldn’t it be great to experience three-dimensional ideas in three dimensions? In this book—the first of its kind—mathematician and mathematical artist Henry Segerman takes readers on a fascinating tour of two-, three-, and four-dimensional mathematics, exploring Euclidean and non-Euclidean geometries, symmetry, knots, tilings, and soap films. Visualizing Mathematics with 3D Printing includes more than 100 color photographs of 3D printed models. Readers can take the book’s insights to a new level by visiting its sister website, 3dprintmath.com, which features virtual three-dimensional versions of the models for readers to explore. These models can also be ordered online or downloaded to print on a 3D printer. Combining the strengths of book and website, this volume pulls higher geometry and topology out of the realm of the abstract and puts it into the hands of anyone fascinated by mathematical relationships of shape. With the book in one hand and a 3D printed model in the other, readers can find deeper meaning while holding a hyperbolic honeycomb, touching the twists of a torus knot, or caressing the curves of a Klein quartic.
Author | : Henry Segerman |
Publisher | : JHU Press |
Total Pages | : 201 |
Release | : 2016-10-04 |
Genre | : Computers |
ISBN | : 142142035X |
The first book to explain mathematics using 3D printed models. Winner of the Technical Text of the Washington Publishers Wouldn’t it be great to experience three-dimensional ideas in three dimensions? In this book—the first of its kind—mathematician and mathematical artist Henry Segerman takes readers on a fascinating tour of two-, three-, and four-dimensional mathematics, exploring Euclidean and non-Euclidean geometries, symmetry, knots, tilings, and soap films. Visualizing Mathematics with 3D Printing includes more than 100 color photographs of 3D printed models. Readers can take the book’s insights to a new level by visiting its sister website, 3dprintmath.com, which features virtual three-dimensional versions of the models for readers to explore. These models can also be ordered online or downloaded to print on a 3D printer. Combining the strengths of book and website, this volume pulls higher geometry and topology out of the realm of the abstract and puts it into the hands of anyone fascinated by mathematical relationships of shape. With the book in one hand and a 3D printed model in the other, readers can find deeper meaning while holding a hyperbolic honeycomb, touching the twists of a torus knot, or caressing the curves of a Klein quartic.
Author | : Diana Davis |
Publisher | : American Mathematical Soc. |
Total Pages | : 90 |
Release | : 2020-10-16 |
Genre | : Education |
ISBN | : 1470461226 |
This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.
Author | : Samuel R. Buss |
Publisher | : Cambridge University Press |
Total Pages | : 397 |
Release | : 2003-05-19 |
Genre | : Computers |
ISBN | : 1139440381 |
This textbook, first published in 2003, emphasises the fundamentals and the mathematics underlying computer graphics. The minimal prerequisites, a basic knowledge of calculus and vectors plus some programming experience in C or C++, make the book suitable for self study or for use as an advanced undergraduate or introductory graduate text. The author gives a thorough treatment of transformations and viewing, lighting and shading models, interpolation and averaging, Bézier curves and B-splines, ray tracing and radiosity, and intersection testing with rays. Additional topics, covered in less depth, include texture mapping and colour theory. The book covers some aspects of animation, including quaternions, orientation, and inverse kinematics, and includes source code for a Ray Tracing software package. The book is intended for use along with any OpenGL programming book, but the crucial features of OpenGL are briefly covered to help readers get up to speed. Accompanying software is available freely from the book's web site.
Author | : Peter Hilton |
Publisher | : Springer Science & Business Media |
Total Pages | : 367 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461219329 |
A relaxed and informal presentation conveying the joy of mathematical discovery and insight. Frequent questions lead readers to see mathematics as an accessible world of thought, where understanding can turn opaque formulae into beautiful and meaningful ideas. The text presents eight topics that illustrate the unity of mathematical thought as well as the diversity of mathematical ideas. Drawn from both "pure" and "applied" mathematics, they include: spirals in nature and in mathematics; the modern topic of fractals and the ancient topic of Fibonacci numbers; Pascals Triangle and paper folding; modular arithmetic and the arithmetic of the infinite. The final chapter presents some ideas about how mathematics should be done, and hence, how it should be taught. Presenting many recent discoveries that lead to interesting open questions, the book can serve as the main text in courses dealing with contemporary mathematical topics or as enrichment for other courses. It can also be read with pleasure by anyone interested in the intellectually intriguing aspects of mathematics.
Author | : George Liaropoulos-Legendre |
Publisher | : |
Total Pages | : 0 |
Release | : 2011 |
Genre | : Architectural design |
ISBN | : 9780500515808 |
A mathematical investigation into every known type of pasta.
Author | : Andrew J. Hanson |
Publisher | : Elsevier |
Total Pages | : 530 |
Release | : 2006-02-06 |
Genre | : Mathematics |
ISBN | : 0080474772 |
Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. - Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. - Covers both non-mathematical and mathematical approaches to quaternions.
Author | : Linda M. Phillips |
Publisher | : Springer Science & Business Media |
Total Pages | : 112 |
Release | : 2010-09-02 |
Genre | : Science |
ISBN | : 9048188164 |
Science education at school level worldwide faces three perennial problems that have become more pressing of late. These are to a considerable extent interwoven with concerns about the entire school curriculum and its reception by students. The rst problem is the increasing intellectual isolation of science from the other subjects in the school curriculum. Science is too often still taught didactically as a collection of pre-determined truths about which there can be no dispute. As a con- quence, many students do not feel any “ownership” of these ideas. Most other school subjects do somewhat better in these regards. For example, in language classes, s- dents suggest different interpretations of a text and then debate the relative merits of the cases being put forward. Moreover, ideas that are of use in science are presented to students elsewhere and then re-taught, often using different terminology, in s- ence. For example, algebra is taught in terms of “x, y, z” in mathematics classes, but students are later unable to see the relevance of that to the meaning of the universal gas laws in physics, where “p, v, t” are used. The result is that students are c- fused and too often alienated, leading to their failure to achieve that “extraction of an education from a scheme of instruction” which Jerome Bruner thought so highly desirable.
Author | : Joan Horvath |
Publisher | : Apress |
Total Pages | : 213 |
Release | : 2016-05-11 |
Genre | : Computers |
ISBN | : 1484213238 |
Create 3D printable models that can help students from kindergarten through grad school learn math, physics, botany, chemistry, engineering and more. This book shows parents and teachers how to use the models inside as starting points for 3D printable explorations. Students can start with these models and vary them for their own explorations. Unlike other sets of models that can just be scaled, these models have the science built-in to allow for more insight into the fundamental concepts. Each of the eight topics is designed to be customized by you to create a wide range of projects suitable for science fairs, extra credit, or classroom demonstrations. Science fair project suggestions and extensive "where to learn more" resources are included, too. You will add another dimension to your textbook understanding of science. What You'll Learn Create (and present the science behind) 3D printed models. Use a 3D printer to create those models as simply as possible. Discover new science insights from designing 3D models. Who This Book Is For Parents and teachers
Author | : Joachim Weickert |
Publisher | : Springer Science & Business Media |
Total Pages | : 478 |
Release | : 2007-06-25 |
Genre | : Mathematics |
ISBN | : 3540312722 |
Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.