Vertex Operator Algebras And Integrable Systems
Download Vertex Operator Algebras And Integrable Systems full books in PDF, epub, and Kindle. Read online free Vertex Operator Algebras And Integrable Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Edward Frenkel |
Publisher | : American Mathematical Soc. |
Total Pages | : 418 |
Release | : 2004-08-25 |
Genre | : Mathematics |
ISBN | : 0821836749 |
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Author | : J. Lepowsky |
Publisher | : Springer Science & Business Media |
Total Pages | : 484 |
Release | : 2013-03-08 |
Genre | : Science |
ISBN | : 146139550X |
James Lepowsky t The search for symmetry in nature has for a long time provided representation theory with perhaps its chief motivation. According to the standard approach of Lie theory, one looks for infinitesimal symmetry -- Lie algebras of operators or concrete realizations of abstract Lie algebras. A central theme in this volume is the construction of affine Lie algebras using formal differential operators called vertex operators, which originally appeared in the dual-string theory. Since the precise description of vertex operators, in both mathematical and physical settings, requires a fair amount of notation, we do not attempt it in this introduction. Instead we refer the reader to the papers of Mandelstam, Goddard-Olive, Lepowsky-Wilson and Frenkel-Lepowsky-Meurman. We have tried to maintain consistency of terminology and to some extent notation in the articles herein. To help the reader we shall review some of the terminology. We also thought it might be useful to supplement an earlier fairly detailed exposition of ours [37] with a brief historical account of vertex operators in mathematics and their connection with affine algebras. Since we were involved in the development of the subject, the reader should be advised that what follows reflects our own understanding. For another view, see [29].1 t Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute and NSF Grant MCS 83-01664. 1 We would like to thank Igor Frenkel for his valuable comments on the first draft of this introduction.
Author | : Igor Frenkel |
Publisher | : American Mathematical Soc. |
Total Pages | : 79 |
Release | : 1993 |
Genre | : Mathematics |
ISBN | : 0821825550 |
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.
Author | : Kenji Iohara |
Publisher | : Springer Science & Business Media |
Total Pages | : 633 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1447148630 |
This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.
Author | : Yi-Zhi Huang |
Publisher | : American Mathematical Soc. |
Total Pages | : 500 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 0821839861 |
The articles in this book are based on talks given at the international conference 'Lie algebras, vertex operator algebras and their applications'. The focus of the papers is mainly on Lie algebras, quantum groups, vertex operator algebras and their applications to number theory, combinatorics and conformal field theory.
Author | : Stephen Berman |
Publisher | : American Mathematical Soc. |
Total Pages | : 268 |
Release | : |
Genre | : Mathematics |
ISBN | : 9780821871447 |
Vertex operator algebras are a class of algebras underlying a number of recent constructions, results, and themes in mathematics. These algebras can be understood as ''string-theoretic analogues'' of Lie algebras and of commutative associative algebras. They play fundamental roles in some of the most active research areas in mathematics and physics. Much recent progress in both physics and mathematics has benefited from cross-pollination between the physical and mathematical points of view. This book presents the proceedings from the workshop, ''Vertex Operator Algebras in Mathematics and Physics'', held at The Fields Institute. It consists of papers based on many of the talks given at the conference by leading experts in the algebraic, geometric, and physical aspects of vertex operator algebra theory. The book is suitable for graduate students and research mathematicians interested in the major themes and important developments on the frontier of research in vertex operator algebra theory and its applications in mathematics and physics.
Author | : James Lepowsky |
Publisher | : Springer Science & Business Media |
Total Pages | : 330 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 0817681868 |
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Author | : Katrina Barron |
Publisher | : American Mathematical Soc. |
Total Pages | : 282 |
Release | : 2017-08-15 |
Genre | : Mathematics |
ISBN | : 1470426668 |
This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.
Author | : Ron Donagi |
Publisher | : Springer |
Total Pages | : 496 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540477063 |
The aim of this CIME Session was to review the state of the art in the recent development of the theory of integrable systems and their relations with quantum groups. The purpose was to gather geometers and mathematical physicists to allow a broader and more complete view of these attractive and rapidly developing fields. The papers contained in this volume have at the same time the character of survey articles and of research papers, since they contain both a survey of current problems and a number of original contributions to the subject.
Author | : Igor Frenkel |
Publisher | : Academic Press |
Total Pages | : 563 |
Release | : 1989-05-01 |
Genre | : Mathematics |
ISBN | : 0080874541 |
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."