The Data Parallel Programming Model

The Data Parallel Programming Model
Author: Guy-Rene Perrin
Publisher: Springer Science & Business Media
Total Pages: 316
Release: 1996-09-11
Genre: Computers
ISBN: 9783540617365

This monograph-like book assembles the thorougly revised and cross-reviewed lectures given at the School on Data Parallelism, held in Les Menuires, France, in May 1996. The book is a unique survey on the current status and future perspectives of the currently very promising and popular data parallel programming model. Much attention is paid to the style of writing and complementary coverage of the relevant issues throughout the 12 chapters. Thus these lecture notes are ideally suited for advanced courses or self-instruction on data parallel programming. Furthermore, the book is indispensable reading for anybody doing research in data parallel programming and related areas.

Parallel Computing: Technology Trends

Parallel Computing: Technology Trends
Author: I. Foster
Publisher: IOS Press
Total Pages: 806
Release: 2020-03-25
Genre: Computers
ISBN: 1643680714

The year 2019 marked four decades of cluster computing, a history that began in 1979 when the first cluster systems using Components Off The Shelf (COTS) became operational. This achievement resulted in a rapidly growing interest in affordable parallel computing for solving compute intensive and large scale problems. It also directly lead to the founding of the Parco conference series. Starting in 1983, the International Conference on Parallel Computing, ParCo, has long been a leading venue for discussions of important developments, applications, and future trends in cluster computing, parallel computing, and high-performance computing. ParCo2019, held in Prague, Czech Republic, from 10 – 13 September 2019, was no exception. Its papers, invited talks, and specialized mini-symposia addressed cutting-edge topics in computer architectures, programming methods for specialized devices such as field programmable gate arrays (FPGAs) and graphical processing units (GPUs), innovative applications of parallel computers, approaches to reproducibility in parallel computations, and other relevant areas. This book presents the proceedings of ParCo2019, with the goal of making the many fascinating topics discussed at the meeting accessible to a broader audience. The proceedings contains 57 contributions in total, all of which have been peer-reviewed after their presentation. These papers give a wide ranging overview of the current status of research, developments, and applications in parallel computing.

Parallel and High Performance Computing

Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
Total Pages: 702
Release: 2021-08-24
Genre: Computers
ISBN: 1638350388

Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

并行程序设计

并行程序设计
Author: Foster
Publisher:
Total Pages: 381
Release: 2002
Genre: Computer programming
ISBN: 9787115103475

国外著名高等院校信息科学与技术优秀教材

Programming Massively Parallel Processors

Programming Massively Parallel Processors
Author: David B. Kirk
Publisher: Newnes
Total Pages: 519
Release: 2012-12-31
Genre: Computers
ISBN: 0123914183

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Introduction to Parallel Computing

Introduction to Parallel Computing
Author: Ananth Grama
Publisher: Pearson Education
Total Pages: 664
Release: 2003
Genre: Computers
ISBN: 9780201648652

A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.

Data Parallel C++

Data Parallel C++
Author: James Reinders
Publisher: Apress
Total Pages: 548
Release: 2020-11-19
Genre: Computers
ISBN: 9781484255735

Learn how to accelerate C++ programs using data parallelism. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This book begins by introducing data parallelism and foundational topics for effective use of the SYCL standard from the Khronos Group and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. Data Parallel C++ provides you with everything needed to use SYCL for programming heterogeneous systems. What You'll Learn Accelerate C++ programs using data-parallel programming Target multiple device types (e.g. CPU, GPU, FPGA) Use SYCL and SYCL compilers Connect with computing’s heterogeneous future via Intel’s oneAPI initiative Who This Book Is For Those new data-parallel programming and computer programmers interested in data-parallel programming using C++.

Specification of Parallel Algorithms

Specification of Parallel Algorithms
Author: Guy E. Blelloch
Publisher: American Mathematical Soc.
Total Pages: 413
Release: 1994
Genre: Computers
ISBN: 0821802534

This volume contains papers presented at the DIMACS workshop on Specification of Parallel Algorithms, held in May 1994 at Princeton University. The goal of the workshop was to bring together some of the best researchers in parallel languages, algorithms, and systems to present and discuss recent developments in their areas of expertise. Among the topics discussed were new specification techniques for concurrent and distributed systems, behavioral and operational specification techniques, new parallel language and system abstractions, novel concurrent architectures and systems, large-scale parallel systems, specification tools and environments, and proof techniques for concurrent systems.