Vector And Geometric Calculus
Download Vector And Geometric Calculus full books in PDF, epub, and Kindle. Read online free Vector And Geometric Calculus ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David Hestenes |
Publisher | : Springer Science & Business Media |
Total Pages | : 340 |
Release | : 1984 |
Genre | : Mathematics |
ISBN | : 9789027725615 |
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Author | : Melvin Hausner |
Publisher | : Courier Dover Publications |
Total Pages | : 417 |
Release | : 2018-10-17 |
Genre | : Mathematics |
ISBN | : 0486835391 |
A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Author | : Miroslav Josipović |
Publisher | : Springer Nature |
Total Pages | : 258 |
Release | : 2019-11-22 |
Genre | : Mathematics |
ISBN | : 3030017567 |
This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.
Author | : Leo Dorst |
Publisher | : Elsevier |
Total Pages | : 664 |
Release | : 2010-07-26 |
Genre | : Juvenile Nonfiction |
ISBN | : 0080553109 |
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Author | : Alan Macdonald |
Publisher | : Createspace Independent Publishing Platform |
Total Pages | : 0 |
Release | : 2012 |
Genre | : Calculus |
ISBN | : 9781480132450 |
This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. This is the printing of August 2022. The book is a sequel to the text Linear and Geometric Algebra by the same author. That text is a prerequisite for this one. Its web page is at faculty.luther.edu/ macdonal/laga. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it. Download the book's table of contents, preface, and index at the book's web site: faculty.luther.edu/ macdonal/vagc. From a review of Linear and Geometric Algebra: Alan Macdonald's text is an excellent resource if you are just beginning the study of geometric algebra and would like to learn or review traditional linear algebra in the process. The clarity and evenness of the writing, as well as the originality of presentation that is evident throughout this text, suggest that the author has been successful as a mathematics teacher in the undergraduate classroom. This carefully crafted text is ideal for anyone learning geometric algebra in relative isolation, which I suspect will be the case for many readers. -- Jeffrey Dunham, William R. Kenan Jr. Professor of Natural Sciences, Middlebury College
Author | : Miroslav Lovric |
Publisher | : John Wiley & Sons |
Total Pages | : 638 |
Release | : 2007-01-03 |
Genre | : Mathematics |
ISBN | : 0471725692 |
This book gives a comprehensive and thorough introduction to ideas and major results of the theory of functions of several variables and of modern vector calculus in two and three dimensions. Clear and easy-to-follow writing style, carefully crafted examples, wide spectrum of applications and numerous illustrations, diagrams, and graphs invite students to use the textbook actively, helping them to both enforce their understanding of the material and to brush up on necessary technical and computational skills. Particular attention has been given to the material that some students find challenging, such as the chain rule, Implicit Function Theorem, parametrizations, or the Change of Variables Theorem.
Author | : John W. Arthur |
Publisher | : John Wiley & Sons |
Total Pages | : 320 |
Release | : 2011-09-13 |
Genre | : Science |
ISBN | : 0470941634 |
This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison. Professors can request a solutions manual by email: [email protected]
Author | : Michael D Taylor |
Publisher | : |
Total Pages | : 318 |
Release | : 2021-08-02 |
Genre | : |
ISBN | : 9781736526903 |
This is an introduction to geometric algebra in n-dimensional Euclidean space and its application to manifolds and to calculus on manifolds. The treatment is moderately rigorous and is suitable for advanced undergraduates and beginning graduate students in mathematics though it should also be accessible to well-prepared students in physics, engineering, computer science, statistics, etc. Preparation in linear algebra and multivariable analysis as encountered in calculus as well as a modest amount of mathematical maturity should be sufficient.
Author | : Chris Doran |
Publisher | : Cambridge University Press |
Total Pages | : 647 |
Release | : 2007-11-22 |
Genre | : Science |
ISBN | : 1139643142 |
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.
Author | : Serge Lang |
Publisher | : Springer Science & Business Media |
Total Pages | : 624 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461210682 |
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.