Variational Problems with Concentration

Variational Problems with Concentration
Author: Martin F. Bach
Publisher: Birkhäuser
Total Pages: 162
Release: 2012-12-06
Genre: Mathematics
ISBN: 303488687X

This self-contained research monograph focuses on semilinear Dirichlet problems and similar equations involving the p-Laplacian. The author explains new techniques in detail, and derives several numerical methods approximating the concentration point and the free boundary. The corresponding plots are highlights of this book.

Newton-Type Methods for Optimization and Variational Problems

Newton-Type Methods for Optimization and Variational Problems
Author: Alexey F. Izmailov
Publisher: Springer
Total Pages: 587
Release: 2014-07-08
Genre: Business & Economics
ISBN: 3319042475

This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.

Topological Methods for Variational Problems with Symmetries

Topological Methods for Variational Problems with Symmetries
Author: Thomas Bartsch
Publisher: Springer
Total Pages: 162
Release: 2006-11-15
Genre: Mathematics
ISBN: 3540480994

Symmetry has a strong impact on the number and shape of solutions to variational problems. This has been observed, for instance, in the search for periodic solutions of Hamiltonian systems or of the nonlinear wave equation; when one is interested in elliptic equations on symmetric domains or in the corresponding semiflows; and when one is looking for "special" solutions of these problems. This book is concerned with Lusternik-Schnirelmann theory and Morse-Conley theory for group invariant functionals. These topological methods are developed in detail with new calculations of the equivariant Lusternik-Schnirelmann category and versions of the Borsuk-Ulam theorem for very general classes of symmetry groups. The Morse-Conley theory is applied to bifurcation problems, in particular to the bifurcation of steady states and hetero-clinic orbits of O(3)-symmetric flows; and to the existence of periodic solutions nearequilibria of symmetric Hamiltonian systems. Some familiarity with the usualminimax theory and basic algebraic topology is assumed.

One-dimensional Variational Problems

One-dimensional Variational Problems
Author: Giuseppe Buttazzo
Publisher: Oxford University Press
Total Pages: 282
Release: 1998
Genre: Mathematics
ISBN: 9780198504658

While easier to solve and accessible to a broader range of students, one-dimensional variational problems and their associated differential equations exhibit many of the same complex behavior of higher-dimensional problems. This book, the first moden introduction, emphasizes direct methods and provides an exceptionally clear view of the underlying theory.

Noncoercive Variational Problems and Related Results

Noncoercive Variational Problems and Related Results
Author: Daniel Goeleven
Publisher: CRC Press
Total Pages: 186
Release: 1996-10-10
Genre: Mathematics
ISBN: 9780582304024

In establishing a general theory of the existence of solutions for noncoercive variational problems and constrained problems formulated as variational inequalities or hemivariational inequalities, this Research Note illustrates recent mathematical approaches and results with various examples from mathematics and mechanics. The book unifies ideas for the treatment of various noncoercive problems and provides previously unpublished results for variational inequalities and hemivariational inequalities. The author points out important applications in mechanics and their mathfematical tratment using recession tools. This book will be of particular interest to researchers in pure and aplied mathematics and mechanics.

Variational Methods for Structural Optimization

Variational Methods for Structural Optimization
Author: Andrej Cherkaev
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2012-12-06
Genre: Science
ISBN: 1461211883

This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.

Convex Analysis and Variational Problems

Convex Analysis and Variational Problems
Author: Ivar Ekeland
Publisher: SIAM
Total Pages: 414
Release: 1999-12-01
Genre: Mathematics
ISBN: 9781611971088

This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.

Concentration Compactness

Concentration Compactness
Author: Kyril Tintarev
Publisher: Imperial College Press
Total Pages: 279
Release: 2007
Genre: Mathematics
ISBN: 1860947972

Concentration compactness is an important method in mathematical analysis which has been widely used in mathematical research for two decades. This unique volume fulfills the need for a source book that usefully combines a concise formulation of the method, a range of important applications to variational problems, and background material concerning manifolds, non-compact transformation groups and functional spaces. Highlighting the role in functional analysis of invariance and, in particular, of non-compact transformation groups, the book uses the same building blocks, such as partitions of domain and partitions of range, relative to transformation groups, in the proofs of energy inequalities and in the weak convergence lemmas.

Nonsmooth Variational Problems and Their Inequalities

Nonsmooth Variational Problems and Their Inequalities
Author: Siegfried Carl
Publisher: Springer Science & Business Media
Total Pages: 404
Release: 2007-06-07
Genre: Mathematics
ISBN: 038746252X

This monograph focuses primarily on nonsmooth variational problems that arise from boundary value problems with nonsmooth data and/or nonsmooth constraints, such as multivalued elliptic problems, variational inequalities, hemivariational inequalities, and their corresponding evolution problems. It provides a systematic and unified exposition of comparison principles based on a suitably extended sub-supersolution method.