Variational Methods in Optimization

Variational Methods in Optimization
Author: Donald R. Smith
Publisher: Courier Corporation
Total Pages: 406
Release: 1998-01-01
Genre: Mathematics
ISBN: 9780486404554

Highly readable text elucidates applications of the chain rule of differentiation, integration by parts, parametric curves, line integrals, double integrals, and elementary differential equations. 1974 edition.

Variational Methods for Structural Optimization

Variational Methods for Structural Optimization
Author: Andrej Cherkaev
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2012-12-06
Genre: Science
ISBN: 1461211883

This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.

Variational Methods in Shape Optimization Problems

Variational Methods in Shape Optimization Problems
Author: Dorin Bucur
Publisher: Springer Science & Business Media
Total Pages: 218
Release: 2006-09-13
Genre: Mathematics
ISBN: 0817644032

Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.

Newton-Type Methods for Optimization and Variational Problems

Newton-Type Methods for Optimization and Variational Problems
Author: Alexey F. Izmailov
Publisher: Springer
Total Pages: 587
Release: 2014-07-08
Genre: Business & Economics
ISBN: 3319042475

This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.

Techniques of Variational Analysis

Techniques of Variational Analysis
Author: Jonathan Borwein
Publisher: Springer Science & Business Media
Total Pages: 368
Release: 2006-06-18
Genre: Mathematics
ISBN: 0387282718

Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic

Variational Methods in Nonlinear Analysis

Variational Methods in Nonlinear Analysis
Author: Dimitrios C. Kravvaritis
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 584
Release: 2020-04-06
Genre: Mathematics
ISBN: 3110647451

This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.

Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces
Author: Michael Ulbrich
Publisher: SIAM
Total Pages: 315
Release: 2011-07-28
Genre: Mathematics
ISBN: 1611970687

A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.

Variational Analysis

Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
Total Pages: 747
Release: 2009-06-26
Genre: Mathematics
ISBN: 3642024319

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models

Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models
Author: F. Giannessi
Publisher: Springer Science & Business Media
Total Pages: 304
Release: 2006-04-11
Genre: Mathematics
ISBN: 0306480263

The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.

Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems

Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems
Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
Total Pages: 400
Release: 2003-05-31
Genre: Mathematics
ISBN: 9781402013850

This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following.