Variational Methods in Nonlinear Field Equations

Variational Methods in Nonlinear Field Equations
Author: Vieri Benci
Publisher: Springer
Total Pages: 271
Release: 2014-10-24
Genre: Mathematics
ISBN: 3319069144

The book analyzes the existence of solitons, namely of finite energy solutions of field equations which exhibit stability properties. The book is divided in two parts. In the first part, the authors give an abstract definition of solitary wave and soliton and we develop an abstract existence theory for hylomorphic solitons, namely for those solitons which minimize the energy for a given charge. In the second part, the authors apply this theory to prove the existence of hylomorphic solitons for some classes of field equations (nonlinear Klein-Gordon-Maxwell equations, nonlinear Schrödinger-Maxwell equations, nonlinear beam equation,..). The abstract theory is sufficiently flexible to be applied to other situations, like the existence of vortices. The books is addressed to Mathematicians and Physicists.

Variational Methods

Variational Methods
Author: Michael Struwe
Publisher: Springer Science & Business Media
Total Pages: 288
Release: 2013-04-17
Genre: Science
ISBN: 3662032120

Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field.

Variational Methods

Variational Methods
Author: Michael Struwe
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 2012-12-06
Genre: Science
ISBN: 3662041944

Hilberts talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateaus problem by Douglas and Rad. This third edition gives a concise introduction to variational methods and presents an overview of areas of current research in the field, plus a survey on new developments.

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems
Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
Total Pages: 465
Release: 2013-11-19
Genre: Mathematics
ISBN: 1461493234

This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.

Variational Methods

Variational Methods
Author: Michael Struwe
Publisher: Springer Science & Business Media
Total Pages: 320
Release: 2008-11-05
Genre: Science
ISBN: 3540740139

This, the fourth edition of Stuwe’s book on the calculus of variations, surveys new developments in this exciting field. It also gives a concise introduction to variational methods. In particular it includes the proof for the convergence of the Yamabe flow and a detailed treatment of the phenomenon of blow-up. Recently discovered results for backward bubbling in the heat flow for harmonic maps or surfaces are discussed. A number of changes have been made throughout the text.

Variational Methods For Strongly Indefinite Problems

Variational Methods For Strongly Indefinite Problems
Author: Yanheng Ding
Publisher: World Scientific
Total Pages: 177
Release: 2007-07-30
Genre: Mathematics
ISBN: 9814474509

This unique book focuses on critical point theory for strongly indefinite functionals in order to deal with nonlinear variational problems in areas such as physics, mechanics and economics. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, the book presents for the first time a deformation theory in locally convex topological vector spaces. It also offers satisfying variational settings for homoclinic-type solutions to Hamiltonian systems, Schrödinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems. The concepts and methods used open up new topics worthy of in-depth exploration, and link the subject with other branches of mathematics, such as topology and geometry, providing a perspective for further studies in these areas. The analytical framework can be used to handle more infinite-dimensional Hamiltonian systems.

Variational Methods in Nonlinear Elasticity

Variational Methods in Nonlinear Elasticity
Author: Pablo Pedregal
Publisher: SIAM
Total Pages: 110
Release: 2000-01-01
Genre: Science
ISBN: 9780898719529

This book covers the main vector variational methods developed to solve nonlinear elasticity problems. Presenting a general framework with a tight focus, the author provides a comprehensive exposition of a technically difficult, yet rapidly developing area of modern applied mathematics. The book includes the classical existence theory as well as a brief incursion into problems where nonexistence is fundamental. It also provides self-contained, concise accounts of quasi convexity, polyconvexity, and rank-one convexity, which are used in nonlinear elasticity.

Methods in Nonlinear Analysis

Methods in Nonlinear Analysis
Author: Kung-Ching Chang
Publisher: Springer Science & Business Media
Total Pages: 448
Release: 2005-11-21
Genre: Mathematics
ISBN: 3540292322

This book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.

Nonlinear Fractional Schrödinger Equations in R^N

Nonlinear Fractional Schrödinger Equations in R^N
Author: Vincenzo Ambrosio
Publisher: Springer Nature
Total Pages: 669
Release: 2021-04-19
Genre: Mathematics
ISBN: 3030602206

This monograph presents recent results concerning nonlinear fractional elliptic problems in the whole space. More precisely, it investigates the existence, multiplicity and qualitative properties of solutions for fractional Schrödinger equations by applying suitable variational and topological methods. The book is mainly intended for researchers in pure and applied mathematics, physics, mechanics, and engineering. However, the material will also be useful for students in higher semesters and young researchers, as well as experienced specialists working in the field of nonlocal PDEs. This is the first book to approach fractional nonlinear Schrödinger equations by applying variational and topological methods.