Variational Methods for Discontinuous Structures

Variational Methods for Discontinuous Structures
Author: Gianni Dal Maso
Publisher: Birkhäuser
Total Pages: 195
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034881932

This volume contains the Proceedings of the International Workshop Variational Methods For Discontinuous Structures, which was jointly organized by the Dipar timento di Matematica Francesco Brioschi of Milano Politecnico and the Interna tional School for Advanced Studies (SISSA) of Trieste. The Conference took place at Villa Erba Antica (Cernobbio) on the Lago di Como on July 4- 6, 2001. In past years the calculus of variations faced mainly the study of continuous structures, say particularly problems with smooth solutions. One of the deepest and more delicate problems was the regularity of weak solutions. More recently, new sophisticated tools have been introduced in order to study discontinuities: in many variational problems solutions develop singularities, and sometimes the most interesting part of a solution is the singularity itself. The conference intended to focus on recent developments in this direction. Some of the talks were devoted to differential or variational modelling of image segmentation, occlusion and textures synthesizing in image analysis, varia tional description of micro-magnetic materials, dimension reduction and structured deformations in elasticity and plasticity, phase transitions, irrigation and drainage, evolution of crystalline shapes; in most cases theoretical and numerical analysis of these models were provided. viii Preface Other talks were dedicated to specific problems of the calculus of variations: variational theory of weak or lower-dimensional structures, optimal transport prob lems with free Dirichlet regions, higher order variational problems, symmetrization in the BV framework.

Variational Methods for Discontinuous Structures

Variational Methods for Discontinuous Structures
Author: Raul Serapioni
Publisher: Birkhäuser
Total Pages: 199
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034892446

In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientists.

Variational Methods For Strongly Indefinite Problems

Variational Methods For Strongly Indefinite Problems
Author: Yanheng Ding
Publisher: World Scientific
Total Pages: 177
Release: 2007-07-30
Genre: Mathematics
ISBN: 9814474509

This unique book focuses on critical point theory for strongly indefinite functionals in order to deal with nonlinear variational problems in areas such as physics, mechanics and economics. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, the book presents for the first time a deformation theory in locally convex topological vector spaces. It also offers satisfying variational settings for homoclinic-type solutions to Hamiltonian systems, Schrödinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems. The concepts and methods used open up new topics worthy of in-depth exploration, and link the subject with other branches of mathematics, such as topology and geometry, providing a perspective for further studies in these areas. The analytical framework can be used to handle more infinite-dimensional Hamiltonian systems.

Variational Methods for Structural Optimization

Variational Methods for Structural Optimization
Author: Andrej Cherkaev
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2012-12-06
Genre: Science
ISBN: 1461211883

This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.

Variational Problems in Riemannian Geometry

Variational Problems in Riemannian Geometry
Author: Paul Baird
Publisher: Birkhäuser
Total Pages: 158
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034879687

This book collects invited contributions by specialists in the domain of elliptic partial differential equations and geometric flows. There are introductory survey articles as well as papers presenting the latest research results. Among the topics covered are blow-up theory for second order elliptic equations; bubbling phenomena in the harmonic map heat flow; applications of scans and fractional power integrands; heat flow for the p-energy functional; Ricci flow and evolution by curvature of networks of curves in the plane.

Shape Reconstruction from Apparent Contours

Shape Reconstruction from Apparent Contours
Author: Giovanni Bellettini
Publisher: Springer
Total Pages: 385
Release: 2015-02-25
Genre: Mathematics
ISBN: 3662451913

Motivated by a variational model concerning the depth of the objects in a picture and the problem of hidden and illusory contours, this book investigates one of the central problems of computer vision: the topological and algorithmic reconstruction of a smooth three dimensional scene starting from the visible part of an apparent contour. The authors focus their attention on the manipulation of apparent contours using a finite set of elementary moves, which correspond to diffeomorphic deformations of three dimensional scenes. A large part of the book is devoted to the algorithmic part, with implementations, experiments, and computed examples. The book is intended also as a user's guide to the software code appcontour, written for the manipulation of apparent contours and their invariants. This book is addressed to theoretical and applied scientists working in the field of mathematical models of image segmentation.

Partial Differential Equation Methods for Image Inpainting

Partial Differential Equation Methods for Image Inpainting
Author: Carola-Bibiane Schönlieb
Publisher: Cambridge University Press
Total Pages: 265
Release: 2015-10-26
Genre: Computers
ISBN: 1107001005

This book introduces the mathematical concept of partial differential equations (PDE) for virtual image restoration. It provides insight in mathematical modelling, partial differential equations, functional analysis, variational calculus, optimisation and numerical analysis. It is addressed towards generally informed mathematicians and graduate students in mathematics with an interest in image processing and mathematical analysis.

Nonlinear Elliptic and Parabolic Problems

Nonlinear Elliptic and Parabolic Problems
Author: Michel Chipot
Publisher: Springer Science & Business Media
Total Pages: 556
Release: 2005-10-18
Genre: Mathematics
ISBN: 9783764372668

The present volume is dedicated to celebrate the work of the renowned mathematician Herbert Amann, who had a significant and decisive influence in shaping Nonlinear Analysis. Most articles published in this book, which consists of 32 articles in total, written by highly distinguished researchers, are in one way or another related to the scientific works of Herbert Amann. The contributions cover a wide range of nonlinear elliptic and parabolic equations with applications to natural sciences and engineering. Special topics are fluid dynamics, reaction-diffusion systems, bifurcation theory, maximal regularity, evolution equations, and the theory of function spaces.

Convex Variational Problems

Convex Variational Problems
Author: Michael Bildhauer
Publisher: Springer
Total Pages: 222
Release: 2003-01-01
Genre: Mathematics
ISBN: 3540448853

The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.

Convex Variational Problems with Linear, Nearly Linear And/or Anisotropic Growth Conditions

Convex Variational Problems with Linear, Nearly Linear And/or Anisotropic Growth Conditions
Author: Michael Bildhauer
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2003-06-20
Genre: Mathematics
ISBN: 9783540402985

The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.