Using Parallel Banded Linear System Solvers in Generalized Eigenvalue Problems

Using Parallel Banded Linear System Solvers in Generalized Eigenvalue Problems
Author: Hong Zhang
Publisher:
Total Pages: 24
Release: 1993
Genre: Eigenvalues
ISBN:

Abstract: "Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented."

Matrix Computations

Matrix Computations
Author: Gene H. Golub
Publisher: JHU Press
Total Pages: 734
Release: 1996-10-15
Genre: Mathematics
ISBN: 9780801854149

Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.

Large Scale Eigenvalue Problems

Large Scale Eigenvalue Problems
Author: J. Cullum
Publisher: Elsevier
Total Pages: 339
Release: 1986-01-01
Genre: Mathematics
ISBN: 0080872387

Results of research into large scale eigenvalue problems are presented in this volume. The papers fall into four principal categories:novel algorithms for solving large eigenvalue problems, novel computer architectures, computationally-relevant theoretical analyses, and problems where large scale eigenelement computations have provided new insight.

Parallel Algorithms in Computational Science and Engineering

Parallel Algorithms in Computational Science and Engineering
Author: Ananth Grama
Publisher: Springer Nature
Total Pages: 421
Release: 2020-07-06
Genre: Computers
ISBN: 3030437361

This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.

Matrix Computations

Matrix Computations
Author: Gene H. Golub
Publisher: JHU Press
Total Pages: 781
Release: 2013-02-15
Genre: Mathematics
ISBN: 1421407949

This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.

Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
Total Pages: 292
Release: 2011-01-01
Genre: Mathematics
ISBN: 9781611970739

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

High-Performance Scientific Computing

High-Performance Scientific Computing
Author: Michael W. Berry
Publisher: Springer Science & Business Media
Total Pages: 351
Release: 2012-01-18
Genre: Computers
ISBN: 1447124375

This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.