Use Of Volterra Models For Identification And Control Of Nonlinear Processes
Download Use Of Volterra Models For Identification And Control Of Nonlinear Processes full books in PDF, epub, and Kindle. Read online free Use Of Volterra Models For Identification And Control Of Nonlinear Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : F.J.III Doyle |
Publisher | : Springer Science & Business Media |
Total Pages | : 319 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1447101073 |
This book covers recent results in the analysis, identification and control of systems described by Volterra models. Topics covered include: qualitative behavior of finite Volterra models compared and contrasted with other nonlinear model classes, structural restrictions and extensions to Volterra model class, least squares and stochastic identification approaches, model inversion issues, and direct synthesis and model predictive control design, guidelines for practical applications. Examples are drawn from Chemical, Biological and Electrical Engineering. The book is suitable as a text for a graduate control course, or as a reference for both research and practice.
Author | : Tokunbo Ogunfunmi |
Publisher | : Signals and Communication Technology |
Total Pages | : 256 |
Release | : 2007-09-12 |
Genre | : Computers |
ISBN | : |
Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches introduces engineers and researchers to the field of nonlinear adaptive system identification. The book includes recent research results in the area of adaptive nonlinear system identification and presents simple, concise, easy-to-understand methods for identifying nonlinear systems. These methods use adaptive filter algorithms that are well known for linear systems identification. They are applicable for nonlinear systems that can be efficiently modeled by polynomials. After a brief introduction to nonlinear systems and to adaptive system identification, the author presents the discrete Volterra model approach. This is followed by an explanation of the Wiener model approach. Adaptive algorithms using both models are developed. The performance of the two methods are then compared to determine which model performs better for system identification applications. Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches is useful to graduates students, engineers and researchers in the areas of nonlinear systems, control, biomedical systems and in adaptive signal processing.
Author | : Eduardo F. Camacho |
Publisher | : Springer Science & Business Media |
Total Pages | : 250 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1447130081 |
Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.
Author | : Stephen A. Billings |
Publisher | : John Wiley & Sons |
Total Pages | : 611 |
Release | : 2013-07-29 |
Genre | : Technology & Engineering |
ISBN | : 1118535553 |
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Author | : R. Berber |
Publisher | : Springer Science & Business Media |
Total Pages | : 814 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 9401101353 |
Model based control has emerged as an important way to improve plant efficiency in the process industries, while meeting processing and operating policy constraints. The reader of Methods of Model Based Process Control will find state of the art reports on model based control technology presented by the world's leading scientists and experts from industry. All the important issues that a model based control system has to address are covered in depth, ranging from dynamic simulation and control-relevant identification to information integration. Specific emerging topics are also covered, such as robust control and nonlinear model predictive control. In addition to critical reviews of recent advances, the reader will find new ideas, industrial applications and views of future needs and challenges. Audience: A reference for graduate-level courses and a comprehensive guide for researchers and industrial control engineers in their exploration of the latest trends in the area.
Author | : Michael A. Henson |
Publisher | : Prentice Hall |
Total Pages | : 460 |
Release | : 1997 |
Genre | : Science |
ISBN | : |
Nonlinear Process Control assembles the latest theoretical and practical research on design, analysis and application of nonlinear process control strategies. It presents detailed coverage of all three major elements of nonlinear process control: identification, controller design, and state estimation. Nonlinear Process Control reflects the contributions of eleven leading researchers in the field. It is an ideal textbook for graduate courses in process control, as well as a concise, up-to-date reference for control engineers.
Author | : Fouad Giri |
Publisher | : Springer Science & Business Media |
Total Pages | : 425 |
Release | : 2010-08-18 |
Genre | : Technology & Engineering |
ISBN | : 1849965129 |
Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.
Author | : G. A. Bekey |
Publisher | : Elsevier |
Total Pages | : 869 |
Release | : 2016-06-06 |
Genre | : Technology & Engineering |
ISBN | : 1483165787 |
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.
Author | : Y. Zhu |
Publisher | : Elsevier |
Total Pages | : 373 |
Release | : 2001-10-08 |
Genre | : Technology & Engineering |
ISBN | : 0080537111 |
Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.
Author | : Robert Haber |
Publisher | : Springer Science & Business Media |
Total Pages | : 432 |
Release | : 1999 |
Genre | : Nonlinear theories |
ISBN | : 9780792358565 |