Unitary Representations of Reductive Lie Groups

Unitary Representations of Reductive Lie Groups
Author: David A. Vogan
Publisher: Princeton University Press
Total Pages: 324
Release: 1987-10-21
Genre: Mathematics
ISBN: 9780691084824

This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations.

Cohomological Induction and Unitary Representations (PMS-45), Volume 45

Cohomological Induction and Unitary Representations (PMS-45), Volume 45
Author: Anthony W. Knapp
Publisher: Princeton University Press
Total Pages: 968
Release: 2016-06-02
Genre: Mathematics
ISBN: 1400883938

This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.

The Langlands Classification and Irreducible Characters for Real Reductive Groups

The Langlands Classification and Irreducible Characters for Real Reductive Groups
Author: J. Adams
Publisher: Springer Science & Business Media
Total Pages: 331
Release: 2012-12-06
Genre: Mathematics
ISBN: 146120383X

This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms.

Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups

Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups
Author: Armand Borel
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 2013-11-21
Genre: Mathematics
ISBN: 147041225X

It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.

Algebraic and Analytic Methods in Representation Theory

Algebraic and Analytic Methods in Representation Theory
Author:
Publisher: Elsevier
Total Pages: 357
Release: 1996-09-27
Genre: Mathematics
ISBN: 0080526950

This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field

Representations of Reductive Groups

Representations of Reductive Groups
Author: Monica Nevins
Publisher: Birkhäuser
Total Pages: 0
Release: 2016-01-06
Genre: Mathematics
ISBN: 9783319234427

Over the last forty years, David Vogan has left an indelible imprint on the representation theory of reductive groups. His groundbreaking ideas have lead to deep advances in the theory of real and p-adic groups, and have forged lasting connections with other subjects, including number theory, automorphic forms, algebraic geometry, and combinatorics. Representations of Reductive Groups is an outgrowth of the conference of the same name, dedicated to David Vogan on his 60th birthday, which took place at MIT on May 19-23, 2014. This volume highlights the depth and breadth of Vogan's influence over the subjects mentioned above, and point to many exciting new directions that remain to be explored. Notably, the first article by McGovern and Trapa offers an overview of Vogan's body of work, placing his ideas in a historical context. Contributors: Pramod N. Achar, Jeffrey D. Adams, Dan Barbasch, Manjul Bhargava, Cédric Bonnafé, Dan Ciubotaru, Meinolf Geck, William Graham, Benedict H. Gross, Xuhua He, Jing-Song Huang, Toshiyuki Kobayashi, Bertram Kostant, Wenjing Li, George Lusztig, Eric Marberg, William M. McGovern, Wilfried Schmid, Kari Vilonen, Diana Shelstad, Peter E. Trapa, David A. Vogan, Jr., Nolan R. Wallach, Xiaoheng Wang, Geordie Williamson

Representations of Real and P-adic Groups

Representations of Real and P-adic Groups
Author: Eng-chye Tan
Publisher: World Scientific
Total Pages: 426
Release: 2004
Genre: Science
ISBN: 981238779X

The Institute for Mathematical Sciences at the National University of Singapore hosted a research program on ?Representation Theory of Lie Groups? from July 2002 to January 2003. As part of the program, tutorials for graduate students and junior researchers were given by leading experts in the field.This invaluable volume collects the expanded lecture notes of those tutorials. The topics covered include uncertainty principles for locally compact abelian groups, fundamentals of representations of p-adic groups, the Harish-Chandra-Howe local character expansion, classification of the square-integrable representations modulo cuspidal data, Dirac cohomology and Vogan's conjecture, multiplicity-free actions and Schur-Weyl-Howe duality.The lecturers include Tomasz Przebinda from the University of Oklahoma, USA; Gordan Savin from the University of Utah, USA; Stephen DeBacker from Harvard University, USA; Marko Tadi? from the University of Zagreb, Croatia; Jing-Song Huang from The Hong Kong University of Science and Technology, Hong Kong; Pavle Pand?i? from the University of Zagreb, Croatia; Chal Benson and Gail Ratcliff from East Carolina University, USA; and Roe Goodman from Rutgers University, USA.