Understanding Multivariate Research
Download Understanding Multivariate Research full books in PDF, epub, and Kindle. Read online free Understanding Multivariate Research ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Applied Multivariate Research
Author | : Lawrence S. Meyers |
Publisher | : SAGE Publications |
Total Pages | : 938 |
Release | : 2016-10-28 |
Genre | : Social Science |
ISBN | : 1506329780 |
Using a conceptual, non-mathematical approach, the updated Third Edition provides full coverage of the wide range of multivariate topics that graduate students across the social and behavioral sciences encounter. Authors Lawrence S. Meyers, Glenn Gamst, and A. J. Guarino integrate innovative multicultural topics in examples throughout the book, which include both conceptual and practical coverage of: statistical techniques of data screening; multiple regression; multilevel modeling; exploratory factor analysis; discriminant analysis; structural equation modeling; structural equation modeling invariance; survival analysis; multidimensional scaling; and cluster analysis.
Understanding Multivariate Research
Author | : William Berry |
Publisher | : Routledge |
Total Pages | : 120 |
Release | : 2018-05-04 |
Genre | : Social Science |
ISBN | : 0429982992 |
Although nearly all major social science departments offer graduate students training in quantitative methods, the typical sequencing of topics generally delays training in regression analysis and other multivariate techniques until a student's second year. William Berry and Mitchell Sanders's Understanding Multivariate Research fills this gap with a concise introduction to regression analysis and other multivariate techniques. Their book is designed to give new graduate students a grasp of multivariate analysis sufficient to understand the basic elements of research relying on such analysis that they must read prior to their formal training in quantitative methods. Berry and Sanders effectively cover the techniques seen most commonly in social science journals--regression (including nonlinear and interactive models), logit, probit, and causal models/path analysis. The authors draw on illustrations from across the social sciences, including political science, sociology, marketing and higher education. All topics are developed without relying on the mathematical language of probability theory and statistical inference. Readers are assumed to have no background in descriptive or inferential statistics, and this makes the book highly accessible to students with no prior graduate course work.
Making Sense of Multivariate Data Analysis
Author | : John Spicer |
Publisher | : SAGE |
Total Pages | : 256 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 9781412904018 |
A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.
An Introduction to Applied Multivariate Analysis with R
Author | : Brian Everitt |
Publisher | : Springer Science & Business Media |
Total Pages | : 284 |
Release | : 2011-04-23 |
Genre | : Mathematics |
ISBN | : 1441996508 |
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Multivariate Statistics for Wildlife and Ecology Research
Author | : Kevin McGarigal |
Publisher | : Springer Science & Business Media |
Total Pages | : 293 |
Release | : 2013-12-01 |
Genre | : Science |
ISBN | : 146121288X |
With its focus on the practical application of the techniques of multivariate statistics, this book shapes the powerful tools of statistics for the specific needs of ecologists and makes statistics more applicable to their course of study. It gives readers a solid conceptual understanding of the role of multivariate statistics in ecological applications and the relationships among various techniques, while avoiding detailed mathematics and the underlying theory. More importantly, the reader will gain insight into the type of research questions best handled by each technique and the important considerations in applying them. Whether used as a textbook for specialised courses or as a supplement to general statistics texts, the book emphasises those techniques that students of ecology and natural resources most need to understand and employ in their research. While targeted for upper-division and graduate students in wildlife biology, forestry, and ecology, and for professional wildlife scientists and natural resource managers, this book will also be valuable to researchers in any of the biological sciences.
Matrix-Based Introduction to Multivariate Data Analysis
Author | : Kohei Adachi |
Publisher | : Springer |
Total Pages | : 298 |
Release | : 2016-10-11 |
Genre | : Mathematics |
ISBN | : 9811023417 |
This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on singular value decomposition among theorems in matrix algebra. The book begins with an explanation of fundamental matrix operations and the matrix expressions of elementary statistics, followed by the introduction of popular multivariate procedures with advancing levels of matrix algebra chapter by chapter. This organization of the book allows readers without knowledge of matrices to deepen their understanding of multivariate data analysis.
Using R With Multivariate Statistics
Author | : Randall E. Schumacker |
Publisher | : SAGE Publications |
Total Pages | : 293 |
Release | : 2015-07-06 |
Genre | : Social Science |
ISBN | : 1483377989 |
Using R with Multivariate Statistics is a quick guide to using R, free-access software available for Windows and Mac operating systems that allows users to customize statistical analysis. Designed to serve as a companion to a more comprehensive text on multivariate statistics, this book helps students and researchers in the social and behavioral sciences get up to speed with using R. It provides data analysis examples, R code, computer output, and explanation of results for every multivariate statistical application included. In addition, R code for some of the data set examples used in more comprehensive texts is included, so students can run examples in R and compare results to those obtained using SAS, SPSS, or STATA. A unique feature of the book is the photographs and biographies of famous persons in the field of multivariate statistics.
Multivariate Data Analysis
Author | : Joseph Hair |
Publisher | : Pearson Higher Ed |
Total Pages | : 816 |
Release | : 2016-08-18 |
Genre | : Business & Economics |
ISBN | : 0133792684 |
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For graduate and upper-level undergraduate marketing research courses. For over 30 years, Multivariate Data Analysis has provided readers with the information they need to understand and apply multivariate data analysis. Hair et. al provides an applications-oriented introduction to multivariate analysis for the non-statistician. By reducing heavy statistical research into fundamental concepts, the text explains to readers how to understand and make use of the results of specific statistical techniques. In this Seventh Edition, the organization of the chapters has been greatly simplified. New chapters have been added on structural equations modeling, and all sections have been updated to reflect advances in technology, capability, and mathematical techniques.
Multivariate Analysis for the Biobehavioral and Social Sciences
Author | : Bruce L. Brown |
Publisher | : John Wiley & Sons |
Total Pages | : 404 |
Release | : 2011-11-01 |
Genre | : Mathematics |
ISBN | : 1118131614 |
An insightful guide to understanding and visualizing multivariate statistics using SAS®, STATA®, and SPSS® Multivariate Analysis for the Biobehavioral and Social Sciences: A Graphical Approach outlines the essential multivariate methods for understanding data in the social and biobehavioral sciences. Using real-world data and the latest software applications, the book addresses the topic in a comprehensible and hands-on manner, making complex mathematical concepts accessible to readers. The authors promote the importance of clear, well-designed graphics in the scientific process, with visual representations accompanying the presented classical multivariate statistical methods . The book begins with a preparatory review of univariate statistical methods recast in matrix notation, followed by an accessible introduction to matrix algebra. Subsequent chapters explore fundamental multivariate methods and related key concepts, including: Factor analysis and related methods Multivariate graphics Canonical correlation Hotelling's T-squared Multivariate analysis of variance (MANOVA) Multiple regression and the general linear model (GLM) Each topic is introduced with a research-publication case study that demonstrates its real-world value. Next, the question "how do you do that?" is addressed with a complete, yet simplified, demonstration of the mathematics and concepts of the method. Finally, the authors show how the analysis of the data is performed using Stata®, SAS®, and SPSS®. The discussed approaches are also applicable to a wide variety of modern extensions of multivariate methods as well as modern univariate regression methods. Chapters conclude with conceptual questions about the meaning of each method; computational questions that test the reader's ability to carry out the procedures on simple datasets; and data analysis questions for the use of the discussed software packages. Multivariate Analysis for the Biobehavioral and Social Sciences is an excellent book for behavioral, health, and social science courses on multivariate statistics at the graduate level. The book also serves as a valuable reference for professionals and researchers in the social, behavioral, and health sciences who would like to learn more about multivariate analysis and its relevant applications.