Uncertain Inference
Download Uncertain Inference full books in PDF, epub, and Kindle. Read online free Uncertain Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Henry Ely Kyburg |
Publisher | : Cambridge University Press |
Total Pages | : 318 |
Release | : 2001-08-06 |
Genre | : Computers |
ISBN | : 9780521001014 |
This book presents a clear exposition of the approaches to the problem of uncertain inference.
Author | : Ben Goertzel |
Publisher | : Springer Science & Business Media |
Total Pages | : 267 |
Release | : 2011-12-02 |
Genre | : Computers |
ISBN | : 9491216112 |
The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations. Every one of the major modes of interacting with such storehouses – querying, data mining, data analysis – is addressed by current technologies only in very limited and unsatisfactory ways. The impact of a solution to this problem would be huge and pervasive, as the domains of human pursuit to which such storehouses are acutely relevant is numerous and rapidly growing. Finally, we give a more detailed treatment of one potential solution with this class, based on our prior work with the Probabilistic Logic Networks (PLN) formalism. We show how PLN can be used to carry out realworld reasoning, by means of a number of practical examples of reasoning regarding human activities inreal-world situations.
Author | : Ben Goertzel |
Publisher | : Springer Science & Business Media |
Total Pages | : 331 |
Release | : 2008-12-16 |
Genre | : Computers |
ISBN | : 0387768726 |
Abstract In this chapter we provide an overview of probabilistic logic networks (PLN), including our motivations for developing PLN and the guiding principles underlying PLN. We discuss foundational choices we made, introduce PLN knowledge representation, and briefly introduce inference rules and truth-values. We also place PLN in context with other approaches to uncertain inference. 1.1 Motivations This book presents Probabilistic Logic Networks (PLN), a systematic and pragmatic framework for computationally carrying out uncertain reasoning – r- soning about uncertain data, and/or reasoning involving uncertain conclusions. We begin with a few comments about why we believe this is such an interesting and important domain of investigation. First of all, we hold to a philosophical perspective in which “reasoning” – properly understood – plays a central role in cognitive activity. We realize that other perspectives exist; in particular, logical reasoning is sometimes construed as a special kind of cognition that humans carry out only occasionally, as a deviation from their usual (intuitive, emotional, pragmatic, sensorimotor, etc.) modes of thought. However, we consider this alternative view to be valid only according to a very limited definition of “logic.” Construed properly, we suggest, logical reasoning may be understood as the basic framework underlying all forms of cognition, including those conventionally thought of as illogical and irrational.
Author | : Baoding Liu |
Publisher | : Springer |
Total Pages | : 491 |
Release | : 2014-11-03 |
Genre | : Technology & Engineering |
ISBN | : 3662443546 |
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, control, and finance.
Author | : |
Publisher | : IOS Press |
Total Pages | : 6097 |
Release | : |
Genre | : |
ISBN | : |
Author | : Michel Grabisch |
Publisher | : Springer Science & Business Media |
Total Pages | : 354 |
Release | : 2013-04-17 |
Genre | : Business & Economics |
ISBN | : 9401584494 |
With the vision that machines can be rendered smarter, we have witnessed for more than a decade tremendous engineering efforts to implement intelligent sys tems. These attempts involve emulating human reasoning, and researchers have tried to model such reasoning from various points of view. But we know precious little about human reasoning processes, learning mechanisms and the like, and in particular about reasoning with limited, imprecise knowledge. In a sense, intelligent systems are machines which use the most general form of human knowledge together with human reasoning capability to reach decisions. Thus the general problem of reasoning with knowledge is the core of design methodology. The attempt to use human knowledge in its most natural sense, that is, through linguistic descriptions, is novel and controversial. The novelty lies in the recognition of a new type of un certainty, namely fuzziness in natural language, and the controversality lies in the mathematical modeling process. As R. Bellman [7] once said, decision making under uncertainty is one of the attributes of human intelligence. When uncertainty is understood as the impossi bility to predict occurrences of events, the context is familiar to statisticians. As such, efforts to use probability theory as an essential tool for building intelligent systems have been pursued (Pearl [203], Neapolitan [182)). The methodology seems alright if the uncertain knowledge in a given problem can be modeled as probability measures.
Author | : R.D. Shachter |
Publisher | : Elsevier |
Total Pages | : 474 |
Release | : 2017-03-20 |
Genre | : Computers |
ISBN | : 1483296555 |
This volume, like its predecessors, reflects the cutting edge of research on the automation of reasoning under uncertainty.A more pragmatic emphasis is evident, for although some papers address fundamental issues, the majority address practical issues. Topics include the relations between alternative formalisms (including possibilistic reasoning), Dempster-Shafer belief functions, non-monotonic reasoning, Bayesian and decision theoretic schemes, and new inference techniques for belief nets. New techniques are applied to important problems in medicine, vision, robotics, and natural language understanding.
Author | : Steven Schockaert |
Publisher | : Springer |
Total Pages | : 368 |
Release | : 2016-08-29 |
Genre | : Computers |
ISBN | : 3319458566 |
This book constitutes the refereed proceedings of the 10th International Conference on Scalable Uncertainty Management, SUM 2016, held in Nice, France, in September 2016. The 18 regular papers and 5 short papers were carefully reviewed and selected from 35 submissions. Papers are solicited in all areas of managing and reasoning with substantial and complex kinds of uncertain, incomplete or inconsistent information. These include (but are not restricted to) applications in decision support systems, risk analysis, machine learning, belief networks, logics of uncertainty, belief revision and update, argumentation, negotiation technologies, semantic web applications, search engines, ontology systems, information fusion, information retrieval, natural language processing, information extraction, image recognition, vision systems, data and text mining, and the consideration of issues such as provenance, trust, heterogeneity, and complexity of data and knowledge.
Author | : Cornelis Joost van Rijsbergen |
Publisher | : Springer Science & Business Media |
Total Pages | : 332 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461556171 |
In recent years, there have been several attempts to define a logic for information retrieval (IR). The aim was to provide a rich and uniform representation of information and its semantics with the goal of improving retrieval effectiveness. The basis of a logical model for IR is the assumption that queries and documents can be represented effectively by logical formulae. To retrieve a document, an IR system has to infer the formula representing the query from the formula representing the document. This logical interpretation of query and document emphasizes that relevance in IR is an inference process. The use of logic to build IR models enables one to obtain models that are more general than earlier well-known IR models. Indeed, some logical models are able to represent within a uniform framework various features of IR systems such as hypermedia links, multimedia data, and user's knowledge. Logic also provides a common approach to the integration of IR systems with logical database systems. Finally, logic makes it possible to reason about an IR model and its properties. This latter possibility is becoming increasingly more important since conventional evaluation methods, although good indicators of the effectiveness of IR systems, often give results which cannot be predicted, or for that matter satisfactorily explained. However, logic by itself cannot fully model IR. The success or the failure of the inference of the query formula from the document formula is not enough to model relevance in IR. It is necessary to take into account the uncertainty inherent in such an inference process. In 1986, Van Rijsbergen proposed the uncertainty logical principle to model relevance as an uncertain inference process. When proposing the principle, Van Rijsbergen was not specific about which logic and which uncertainty theory to use. As a consequence, various logics and uncertainty theories have been proposed and investigated. The choice of an appropriate logic and uncertainty mechanism has been a main research theme in logical IR modeling leading to a number of logical IR models over the years. Information Retrieval: Uncertainty and Logics contains a collection of exciting papers proposing, developing and implementing logical IR models. This book is appropriate for use as a text for a graduate-level course on Information Retrieval or Database Systems, and as a reference for researchers and practitioners in industry.
Author | : L.N. Kanal |
Publisher | : Elsevier |
Total Pages | : 474 |
Release | : 2014-06-28 |
Genre | : Computers |
ISBN | : 1483296539 |
This second volume is arranged in four sections: Analysis contains papers which compare the attributes of various approaches to uncertainty. Tools provides sufficient information for the reader to implement uncertainty calculations. Papers in the Theory section explain various approaches to uncertainty. The Applications section describes the difficulties involved in, and the results produced by, incorporating uncertainty into actual systems.